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PREFACE

The first volume of this monograph included the formu-
lation and self-similar solutions to blast waves. The
nex*t step in our exposition of Blast Wave Theory and Compu-
tations then expresses the need for presenting analytical
solutions that, in effect, extend che range of validity of
self-similar ones. The authors found that the one analytical
method that is most amenable to solving different classes
of problems i3 the Quasi-Self-Similar Method developed by
Oshima. It was then decided to devote the second volume
of this series to presenting a complete exrosition to this
method that includes solations to several types of problems,

most are included here for the first time.
e

~In this volume, after a concise introduction in Chapter
I, the basic blast wave equations are presented in Chapter

II. A novel treatment of the quasi-similar formulation,
presenting it as a zero order solution to a double Taylor's
series expansion is presented in Chapter IIY. Applications
are then presented in Chapter IV which is divided into six
parts. The first two parts include solutions to the adiabatic
point explosion problem, the iatter bheing an analytical closeu
form solution. The third part deals with blast waves in

real gases, where the formulation is presented here in more
details than that presented in Volume I. Blast waves i~ a

‘detonating medium is included in the fourth part, with energy

added in the front. Blast waves in reactive media where the
detonation energy is released in a spacially varying fashion,
are given in the fifth part. Finally, in the sixth part,

the efiects of viscosity, heat conduction and radiation on

detonation are presented. .

Tri2 authors are greatly indebted to Mrs. Ellen Kamel,
Mrs. Janie Abdel Aziz and Mr. Taher Nour for their ability
to produce this neatly typed monograph. The efforts of
Eng. Salah Roushdy in producing the graphs can only make
one wonder at the extent of human endurance.

This work is supported in part by the U.S. Army Offlice
of Scientific Research - European Research Otfice under
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Contract No. DAJA37-80-C-0342 to the Cairo Canter for
Combustion, Energy Conversion and Flow Research (CEFR).
Part of the second author's support as well as a portion
of the manuscript production cost, were defrayed by the
Foreign Relations Coordination Unit of the Supreme Council
of Egyptian Universities through Grant No. FRCU 81015.
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CHAPTER I

NON-SELF-SIMILAR BLAST WAVES

1.1 INTRODUCTION

Blast waves considered here are geometrically symmetrical, non-steady {lcw fields

YR et e

of a compressible medium that are bounded by gasdynamic discontinuities. Gene-
rally they are formed by explosions. The process 1s governed by spatially one-
dimensional time dependent equations expressing the conservations of mass, momen-

tum and energy, subject to the appropriate boundary crnditions at the center and

at the front for the particular problem under consideration. r

1.2 SELF-SIMILAR BLAST WAVES

In Volume I of this report, it has been shown that under certain conditions the
blast wave rquations may be reduced to a set of ordinary differential enuacions
in terms of a single similarity variable, thus making them umenable to simple
analysis., This may occur, in general, when the dependence of the gusdynamic pa-
rameters an the front cgqordinate is anihilated. Such self-similar problems are,
as a rule, characterized either by a constant front velocity, or hy a nugligible,
essentially zero, counter-pressure that causes the lfach number of the wave to
remain infinite, irrespective of its actual velocity. In addition, the specific
heat ratio of the gas, as well as any existing source terms of mass, momentum or -
energy, may only be admitted a8 functiones of the non-dimensional similarity va-

riable. If the wave front wers moving into a variable dsnsity atmosphere, then

the ambient density dependence should be restricted only to a constant puwer of

the distance from the center of symmeiry. =

The power and versatility of the concept of sslf-similarity have bLuen denonslra-

ted in Volume I by a widge variety of possible applications.

In many physical situations, however, especlally when one is interested in the
interprstation of experimental racorus, wave front Mach numbers are finite and
the waves either accelsrate or decay. Under such circumstances similarity ccn-

ditions are inspplicable. One then has to take into account the deperdance of

the gasdynaric parameters cf the problem on the change in conditions at the




front, as well as their change within the flow field. It thus bscomes necessary
to contand with a system of non-linec:. coupled, non-homogeneous set of partial

differential ec.ations.

I.3 THE QUALI-YIMILAR "ETHOD

An aralytical rolus.on to this set of equations utilizing the so-called "quasi-
similar” meinod develaped by Oshima (186N, 1862, 1964). By postulating a "sepa-
ration of variables" ialation bstween the dependent and the independent varia-
bles, then, due to the logarithmic nature of the governing sguations, all the
terms containing the front coorainate may taxs their values at the front. The
squations, thus, are reduckd to a system of ordinary differential squations,
identical to the self-similar ones, with the dependence on the front coordinate
included only as an additive slgeibraic term that has the front coordinate as a
parameter. An explanation of the theoretice! baais of the quasi-similarity me-
thod was given later by Kamel (1971). Hs.proved that the quasi-similarity ap-
proximation is the zerotn-ordar solution of a double Taylar's sariss expansion

of the dapendent variables.

The aumerical solution to the quasi-similar equations, for constant wnergy blast
waves, has been tabulated by Lewis (1961) for the plane, cylindrical, and sphe-
rical symmetries with a variety of specific heat ratios, while Cshima (1960,
1964) obtained an approximate closed form solution. Thie method was then used
by Les (1%67) to study the non-uniform propagation of imploding shocke and deto-
nations, while Oshima (1567) attempted to apply it to the decoupled shock-defla-
gration syscem, Rae (1963, 1965, 1968), on the other hand, used it in conjunc-
tion with his meteoroid impact solutions. Attia (1874) used this method to ob-
tain a non-self-similar solution of blast waves in adiabatic point explusions
bused on the criterion of zero particle velocity at the centur of symnetry. In
Chapter XI of Volume I of this report, the guasi-similar method was useu to ob-
tain a solution to blast waves taking into account real gas effects (Ghuneim,
1975; Kamel et al., 1977b). The problem of non-self-similar detonation waves
was solved by Abdel-Raouf (1982) and that with transport shenomena taken into
account was also solvaed by the same suthcr (1882)  Ohyagi et al. (1881) took
into account the distribution of fuel concentration in a reactive meciium by an

exponential model of heot release, in terms of the front coordinate, and ob-
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tained a solution for the spherical wave by utilizing the quasi-similar tech-

nique.

In this volume, the quasi-similar method of Oshima 1s analyvzed and discussed
briefly: since it 1s a simple and qualicatively acceptsd anaiytical method cf
solution which has a wide range of applicability. A wide rangec of prsusible
applications are included. Theese applications deal with biast waves: in in
adiabatic medium; with conduction and radiation effects and with real pas er-

fects, as weli as flame and detonation induced blast waves.
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CHAPTER 1II

BASIC EQUATIONS

II.1. INTRODUCTION

The phenomenon of wave propagation in gases. constitutes unsteaay motion of
the flowing medium, which is governed by the conservation equations, namsly
the corservation of mass, momentum, and energy. When the condition of sym-
metry 1s satisfied, the flow fisld behind the shock wave 1s one-dimensional,
i.e., the gasdynamic parameters will then depend onlv on one spatial coor-
dinate ¥ , measured from the center of explosion, and the time t , mea~

sured from the instant of explosion.

In this chapter, the fundamental conservation equations are formulated appli-
cable for the three geometrical symmetries; planar, cylindrical and spheri-
cal, without restrictions imposed by a specific form of an equaticn of state
and including any possible source terms oé mass, momentum or energy that may
affact the flow field. The fundamental equations are thus, accordingly,
wransformed, with the use of appropriate non-dimensional variables and para-
meters, to a most concise non-dimensional form, of Eulerian space profilas,
for an arbitrary equation of state relating the intzrnal energy with pressure
and qensity, The formulation of the problem is then completed by the speci-
fication of the boundary conditions imposed by a gasdynamic discontinuity at

thae wave front,

The integral relations, which are the gicbal conssrvation equatione of wvass,
momenturm, and energy, are also formulated in thelr general form, These rsla-
tions serve & dual purpose; in addition to providing a gheck on the accuvracy
of tre flow fiwld obtained by selving the conservation equations, they alsu

pravide means for the determination of the front trajectory.

Finally, the reduction of the conservation equations, boundary conditions ang
integral relatiocns to their simplest forms for a medium which behaves as a
perfect gas with constant specific heats as well as in the case of strong ax-

plocion, or sglf-similar motion, 1s determined,

TUFA N
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11.2. THE CONSERVATION EQUATIONS

The governing equations, when taking into account possible sources of mass,
momentum or energy that may affect the flow field, are expressed, as given

by Oppenheim et al. (1971) as follows:

i i j
> (Pr > -
wt(f ) + Iz (Pur’y = £r 4 (II.1)

2 _(fur ).,.:E.r._[(LL..,:FP.).Pr]:.Pr C}LE"'/LF) (I1.2)

-t

)

£y 541 p i o ort
—?;—-t-[(f+%-)-f"1+§;:[(e+%-+?)f“"] -!l’.ﬁ[ (11.3)

where (4 1is the particle velccity, F is the density, P 1is the pressure and
€ 1g the specific internal energy. The index J is a geometrical factor de-
fined in terms of the variation of the flow cross-sactional srea A with di-

stence as:

JE%:O}‘)Z
(4

for plane, cylindgrical and spherical symmetrical flow, cespectively, The avin-
pels Jqu. ,/zr.and vﬁ%r reprasant the mass, momentum and «nergy sourc: turms,
respactivaly, per unit mass of the flowlng medium,

v
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I1.3. THE EQUATION OF STATE

The governing equations, Egs. (II.1) - (II.3), are completed by the eguation

of state that expresses the internal energy in terms of pressure and density.

Thus, since € = @ ( P, £ ) it follows that

d@:(.“

&
wlh P

)_P dd P +(-:L%-§ )P dén P (II.4)

foom the above equation, ong has

e _ e & \ (2!
(S3), =(STe), m)P(;'ﬁ‘a)s
whare subscript § denotes entropy.

While for a constant ertropy process, the first law of thermodynamics requi-
res that

Ji:.f'?ﬁ

where L 1is the specific enthalpy.

Thus
! . dP
di .-.J(e.,}{.’.) :Ae*éfe-fﬁ_{_%
cr !
J@:_.P_é.ﬁ
‘PZ

from the above equation, one has in gensral

o
v
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Hence it follows that

(285 =[5 -3, |2 (11,5

defining now a non-dimensional isentropic compressibility, or velocity of

sound modulus

~ AP _ P 2
I = <W)s = 5 a (II.6)

and a8 non-dimensional internal energy factor

« _ P e ‘

Thus, Eq. (II.5) reduces to ’

£ +1 P
D@\ = +
(W'n P /—‘ f

and £q. {II.4) becomes

deu Kt £ dPok L db 10s)

(II.8)



Equation (II.9) represents the general equation of state in a differential

form.

Taking partisl derivatives of the above with respect to the space coordinate,

Y' , and the time, € , respectively, one obtains finally:

P
~= — F ~r & SF (II.10)
and
~e K+d P ~IpP _ P ~>tnf
5T = & -F- iot ‘k—ﬁ- e (II.11)

IT.4. NON-DIMENSIONAL VARIABLES AND PARAMETERS

The next step is to cast the governing equations, Egs. (II.1l) - (II.3), in
their most convenient non-dimensional form. The various non-dimensional va-
riables and parametsrs can be properly specified by referring to Fig.Il.1

which represents the various blast wavs cuordinates in the time-space domain.
The origin of the system is, as a rule, at t: =0 and = 9 , and the co-
ordinates of the front are ta‘and r, . With reference to Fig. II.1, the Eule-
rian space profiles are obtained by seeking a solution along t - 'tr) or

z = 4 , where

C = -t; (II.:2)
n

Therefore, the following groups of non-dimensional variables and parameters

will be used:

B
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i) Phvsical space coordinates, the independent variables of the problem:

X = -—”71: i ¥ (I1.13)

]
a5

where the first is referred to as the field coordinate and thes second as
the front coordinate. The symbol ( ¥~ ) denotes the space coordinate of a
point in the flow field while ( ¥n ) is the radius of the front ui the
same instant of time, subscript (O ) specifying a reference value. It

should be noted that when the front trajectory is known, } becomes a mea-
sure of tims.

ii) Front parameters, i.e. variables pertaining uniquely to the front

motion ard, therefore, are functions of only the fro-t cooroinate.'} :

2
Yz Pa 4 ta dlawn _ dld _ ,d0
wi mr 7= t, A2 Thrn a3 —1:'-,9;“

/“s#ﬂ:!ﬂ:-‘“—%& )fsj%g ’jg’}“ ([I.14)

where W, I‘jéi 1s the front propagation velocity.:\ is the decay co-
gfficlent which exprssses the deceleration of the wave front, @ 1is the
velocity of sound, p* ia the Mach number of the wave front, lﬁt is the front
velocity modulus, and.F is the ambient density paramster, while subscript

(@ ) denotes conditions of the ambient atmosphere into which the front of
the blast wave propagates.

iii) Gasdynamic parameters of the flow field, t“e dependent varlables
describing the structure of the flow field:

- s h o L ; 9 - P_ and o m.L (II.15)
Fak 2 e

n

TR T
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iv) Reduced variables; coordinates of the phase plane:

F

]

£ = (Lt

2
x _/_"oi) J ZE%-"(%-%) (II.15)

v) The source term parameters:

«,, Eﬂn-—(—'/,’; j W= _G'?. and “i‘ﬁ/zé'w% (I1.17)

II.5. TRANSFORMATION TO NON-DIMENSIONAL FORM

l, Transformation of variables

The independent variables of the problem in non-dimensional form will be
X =X (r, t)and f = } ( r, £). This, consequently, means that
F=r (x,F)end £t =t (xX,F ), and with the aid of the definitions

of Eq. (II1.13), one has for the non-dimensional transformation

Ny

—=__

¥

|

- r X

J
3

2 o = DA = i)

h But for the Eulerian space profiles, -—?;‘; = Q0 ., Thus:

J|J
|
d

= : (I1.18)

and

4

]
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where
X = };_?__; ~Sr -— 1 'x
~r, Wr'mm —TE
= 5 "n
Thus
= Wi [ > > ]
= -+ (II.19
~t ; Lohx i ¥ )

2. Conservation equations in non-dimensional form

Substitution from Egs. (II.13) - (I1.19) into Egs. (II.1) - (II.3) yield the
following non-linear partial differential ehuations for the conservation of
mass, momentuh and snergy, respectively, in non-dimensional form, as given
by Oppenheim et al, (1871):

J’ lg"_?.,(f. 1)%5'7*%(-7':;/',’,£*j> =&, (I1.20)
“where

¢M B (1I.21)

2 /I’ é‘ g pﬂg P o)

Begpbed o0zl 8 - s

whar-
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i
r 7:‘ r (] (11.23)

and

fz Y W
T ) Ym (II.24)

Equatiens {II.10) and (I1.11) are also, respectively, reduced tc

. K+t 9 b9 49 bk
Ny /;’ T?v?nx ‘k Shez

(10.25)

and

_%0_&';’? =Aoy &/:1 ,g_[,g +}:-é-§}—£%[al+§%§‘-] (11.28)

Using Egqs. {I1.25) end (I1.26) to eliminate ¢ f om Eq. {1I.24}, one gets

f-Aeafl b -n2fh - (G gk o4 03gh]- &
where
- 2
%Eﬁ“g‘m %"}n(%_(fﬁh_g____é_)qu] (11.28)
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Equations (II.20), (I1.22) and (II1.27) ‘ogether with the definitions of Egs.
{I1.21), (II1.23) and (11.28} represent the governing equations in their ge-
neral form without restrictions imposed by sepecific equation of state end

including any possible scuices of mass, momentum or energy that may affect

the flow field.

3. Reduced autnromous form

The governing equations, Egs. (II.20), (I1I.22) and (II.27) may be expressed
in terms of the raduced variables defined in Eq. (II.16). Whan these varia-
bles are substituted in Egs. (II1.20), (I1.22) and (11.27) yield, respec-
tively:

f’ ?_-‘;t‘-%MF 1) °/A+F(—-'-L£+J+i) %, (I1I.28)

f b 7 =
-.«}.-riﬁa- F.J)(%a%+1} +,—_-,Z;_‘-—$:z = & (II.30)

and

/ *
J;-a.,-_.:%u,(r.«).}g_%_r@g +<r.:>7:%+§%] =& (way

The above equations can be considereo as a set of three algebraic equations
for three unknowns that represent the logarithmic gradients with respect to
xX of F, h and 9 , respectively. Solving them algebraically for these

gragients, one obtains the following autonomous form of the blast wave equa-

)
O 2nF . F; «o—)? + F, ' (1I.32)

MR 2L SR PR
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p2bh - M L H L H
S x T 7 + Pw (1I1.33)
D '3[{\9 =G G G' (
—Tx x 7 + U, 11.34)
As a consequence of the definition of Z , one has also from the above
-;P,‘Z — c
D Tis - Z + Z}-r Z (11.35),
where
2
D(F,Z) & Z-(1-F) (1I.36)
A+2 z ' ‘
F, = (F-4)(F- —f—)+r—,7_-[9\—<d+i)/"/"-f;] (11.37)
= _1 : ; ’ .
Hz-(J-F) {F’; [+ DF 4 %]D} (11.38)
. 4 £ g ‘
Gx”@_,_-> {F'f;-f'[l F(“i)-ﬂ-f-JZ,]D} (11.39)
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Z‘EG-H‘-Z—D (1I.40) "

and

F = (F-1) -»1& 2z ﬁ)ékg

: 'v?n} FE S (1I.41)

H E 5_75 ( Tt J (II.42) :
=_____ %&9 . D .

G} [/’" + 273 ] (II.43) -
Z G, -~ H (II.44) -
;R A ,_
while )

F, s U-F) B + /___%-E(r‘qﬁﬂ + &) (I1.45)

H, = A (F‘F;) -5, D) (11.46)
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G, = <TL5 [/‘Fﬁ, _(/"g?',-;-qZ)D] (11.47)
Zw G - Hw (II.48)

I1I.6 BOUNDARY CONDITIONS

In addition to the conservatior. equations and the equation of state, the for-
mulation of a blast wave problem is completed by the boundary conditions which
can be found by solving simultaneously the equations of continuity, momentum
and energy across the shock front. Accordingly, the boundary conditions de-
pend on the problem under study. Generally, there are two types of boundary

conditions:

i) for adiabatic point explosion problem, or when the heat of reaction, in
the case »f reactive medium, is distributed inside the flow field, the bounda-

ry conditions or the Rankine-Hugoniot relations will be determined as follows:

Consider the shown control volume, Fig. II.2, which contains discontinuity in
flow variables at the shock front. Applying the conservation principles of
mass, momentum and energy between states 1 and 2, ahead and behind the wave

front immediately, one gets, respectively

L2
ff+ﬁu1=3+-§af
ang
2 2
« -
e Gt = e 2

gy s
e
B A
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Changing to a frame of reference in which the shock wave is at rest, the

above equations yield, respectively

LW = £ (- Up) (1I.49)

P PW =P . ¢ (w )

a+ LW, = 04+ 5w, -U) (1I.50)
2w B Wy —idn)

‘-"a+-f:-+-,¢'-’ = €n+ gty AT (II.51)

where Vva is the front propagation velocity, and subscripts & and n denote
conditions of the ambient atmosphere into which the front of the blast wave
propagates and conditions immediately behind the wave fiont, respectively.

ii) in the case of reactive medium, the heat released may be applied to
the blast wave at its front due to laser irradiation or chemical reaction.
The boundary conditions in this case, or the Hugoniot relations, are determi-

ned exactly as above, except for the energy equation which takes the form

2 L

l?a.f._’)&.f-_%..;.q.:t?n-f- _ﬁ__,_%ud (1I1.52)
A 2 £ 2

where q.is the energy deposited at the front per unit mass of the medium.

Defining the non-dimensional chemical energy parameter

q = 9 (1I.53)

i R R
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ey
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Therefors, the boundary conditions, Egs. (II.49) - (II.52), will take the

following non-dimensional form, respectively

h =__%
n oy (I1.54)
— Y
In = F + ol (11.55)
) 2
o7, =6;+.7'{-€,+3L/,; (I1.56)
a
and
g f 2 7]
6‘;,:0“24-7;_"4-{—614-59‘ (11.57)
a

For adiabatic point sxplosions or for reactive medium with distributed hsat
release inside the flow field, Eq. (II.56) 1is applied, while for reactive wme-
dium with instantansous heat rslease at the front, €q. (II.57]) is applied.

II.7 INTEGRAL RELATIONS

The integral relaticns for a blast wave are the sxpressions of the principles

of global mass, momesntum, and energy conservation.

1. Mass integral eguation

The mass integral states that, at any homent. the amount of mass distributed
inside the flow field should equal that engulfed by the front plus that of
any other source that may affect the flow field., Thus:

ovs—

: a ‘
M = [ pride = M M, (11,58)
ng 0

i

[




whera r1; is the totel mags centent inaide the flow fleld, while ri; is a
geometricasl factor, dafined by

n = 27§ 4§ @-1)(4-2)

r1a‘is the mazs of the ambient merium engulfed by ths front, thus:

f&jé -e-.__.-"' /Mf

with the aid of €a. (IX.14)

thus

dod §
Ma;—.-’—-—[%’ﬁ+~f L& ‘4'5] [11.58)
o

and

r1/zis the mass that may be added to the flcw figld by a source from the

instant of explosion till the instant under consideration, thus

el e -t il el
- . '.'4 &

(II.60)

My = ([ ey dedr

Therefore, the subatituticn of Egs. (I1.98) and (11.€0} into Eq. (I1.58)
yiglds the mess integral

»

My /
nj’gJ f’r ar

4,,1 (fx -/ &%’Qddg} /Ja"’ dedt (11.61)

Q L~
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which for a sourceless flow and uniform ambient density, fa = constant, re-

duces to the simple form

M. Hn'
ng (4+ 1)

On the other hand, the mass integral may he obtained dirsctly by integrating
Eq. (II.1), the mass conservation equation, with respec. to 1, from the -
center of symmetry to the shock front, to yield

n : J .
of 2@y dv  Liu, = [ eria, dr (11.53)

By utilizing Leibnitz rule, the first term gives

.

E Py o L 1 46
. of-??.'(‘o")‘l”"ﬁ’i‘af” dr - fir 48

which may be substitutri into Eq. (£I.63) to yisld, noting that f%%@ a yﬁ' ,

" i ' n,
g [ fridry G0 (U -wg) = [#ria,dr

But, from Eq. (II.48}), one has

L Up-w,) = = W, .—.--J;.gjcﬁ

P then

ﬁ?,f pridr- G 48 = [reria, dr

The last equation may now be integrated with respect to time tu yiteid
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noo. r - t n :
of Pridr =°fn;; i dr +°f°f"/’r’/2,1 dr dt

which, after integrating the first term on the right hand sice by part, re-
duces to the required mass integral, exactly as given by Eq. (II.61).

Now, for J& = constant, and noting the definitions of ) Eg. (II.14),and
u44 . €q. (II.17), Eq. (1I.61) may be non-dimensionalized to yield

1 ,
Q= _ - [h2'dx
njfar;,”’ o

14 .
R A ?zjék’ M dx dz
- -+ x [
7Y 1 o/;/ ™ {I1.64)
which, in turn, for a sourceless flow reduces to

. )
: ]
‘Tz = fAn’ dx = 4 {11.65)
-]

I+

i
nr

2. lMomen.um integral equation

The momentum integral may be obtained by integrating £q. (II.2), the momentum

conservation equation, with respect to r , from v = ¢ to ¥=-1ty , as

follows
" i t Ry
{ 2o (Purt)dr (g w85 =[eri(if 2 dr e
e ) ° r

The first term yielas, after utiiizing Lelbnitz rule,
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K d "o i i dh
J o eardr =4y [Ceuride- §u, il 40

Substituting the above equation in Eg. (I1I.66), .o {eld

”"

jﬁar’dr.,.r: (B + 8ty (Un-wa)] = fﬁr”;" + ) dr

,k By solving Eqs. (11.49) and (I1I.50) simultaneously, one obtairc
.
4

E‘-‘ L Uy (Uy - W, _._-_-P;_-_Ed_._c_‘_ﬁ
+ Jp n(ﬂ ﬂ) a %dt

then
i j_fmfurd'dr_,_ fn‘i&,dm _./‘fp,.i(.f'f’ 2.)dr
k te Wa  dt T, Prt e

Integrating the above equation with respect to time, one gets

-

j) f furtdy
"4

-_j Jr+/f (JP!’ _,_fr'j./?—,-)cffcft (11.67)

where 72 is the momentum of blast wave.
J

Hence, for constant jz Eq. (II.67) may be non-dimensionalized to give
i .
J;: ? — : =fhf9(’c‘x
n,-&,;:«r o
} .
Y 1+1
- /:‘ 2oy

ol o M

14 . ,
,,.ofo//u x99, h u.)F) dx dz (II.68)




..23 -

3. Energy integral equation:

The energy integral states tnat the total energy of a blast wave, £;‘ ,» Should

equal cthe summation of the energy deposited initially to generate the wave,
g; , the ambient internal energy engulfed by the front, A;a » the chemical
energy liberated in ths case of reactive medium, é;ﬁ , and the energy due to

sources within the wave, 451 « Thus, for j; = constant:

£ s i) prd
T T A b £y = [(er ) S0 e
where '
A : et
J +
E;_:f eaf; " Am =M_V,;_-
° (9+ 1)

if the heat liberated is considered at the front, thus
ha ; drt
a y'j - Q'-Fa.m

while, in the case of distributed heat relsase, £;h will be obtained as €;2,

where

br , j
6; =of o/ Pr S, drdt

Therefcre the energy integral will be, in general

f+l

rn 2 7
£ - [ (e+ L) Pridr £ 4 Fafaln
"’j o/ ( + 2 - | ¢ + j.+4

141 ta fa
+ ™ +f / ﬁf1/2€. drdt (11.70)

I+

PRl DAL
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For a sourceless flow and heat released at the front, the energy integral

reduces to
nj o re /] (1*4) 11 (11.71)

We are going to use the definition of V¥, , the reference radius, as that gi-
ven by Oppenheim et al. (1971) which includes the two most important initial

parameters ( £; and f; } of the problem:

’ I+d
b o= (£L)* (11.72)

Using the deiinition of ¥ to replace E; in Eq. (II.70) by

J.+i
€ = R g

Thus, the energy integral equation in its general form, Eq. (II.70), can be

expressed in non-dimensional form as follows

A SR y SN YWY <l s &

wiich, for a sourceless fiow field, reduces to

{ . :
JB = f(o*’+ -é-) hzx!dx

-, Y[t 4
s+l T ,{/: ]’:" * g+l ]

fa 1 -+ .....L

=9j[ 4 : , :) (I1.74)
az+t gttt 4
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where

6‘&::...-66_:5_.&_
wy* A%

Differentiating the above equation with respect to Y and using the definition

of ;\ , one can easily obtain an expression for the decay coefficient

A=t B -0 -4

{I1,75)
d;-y d‘TS )
dy
while, for adiabatic point explosion, the above equation reduces to
A - )Ty —ox
= (I1.76)
Js

A
3-99g

I1.8 CASE OF PERPECT GASES

As formulated above, the introduction of a gensral equation of state, €= (PP
leads to two thermodynamic properties, namely the internal energy ¢¥ and the
speed of sound factor [" , which include essentially the characteristics of
real gases. However, due to the complexity of the governing equations in
their general form, the assumption that the flow field behaves as a perfect

gas with mean specific heat ratio has a wide popularity in most literaturs.

1, Properties of perfect gases

Tt equation of state of a perfect gas is

P= PRT “ (11.77)

.

where R is the gas constant and T is the temperature. One has also the fol-

liwing relations:

L ]
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P

€ =C, T = ..g..I. =
v ¥4 P (r-1) (II.78)

where €, 1s the specific heat at constant volume, and ¥ is the specific heat

ratio.
=% (11.79)
X - 1
¥-1 (II.80)
Y
6~ = =
a 55D (II.81)
and
9 (11.82)

2. Governing equations

fhe mass and momentum eguaticns, €qs. (II1,20) and (II.22) remain unchanged,
while gnergy equation, Eg. (II.27), bscomes, for j; = gonstant and noting

o) = -
that :;—r'\—? ;\ -;-{-(:g

-A+%i?;%-+£%—&>-3xi—x-ﬁ‘[l;}b—+%%]z¢£ (11.83)
where
1
& = r-1) %f&g—.- F o —(3-;‘-':;.%- g.)w,,] (11.84)

(]
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3. Boundary conditions

Equation (I1.54) of the boundary conditions remains unchanged, while Egs.

(I1.55) - (I11.57) reduce, respectively, to

9 = £ + ..3_ (11.85)
t  9n - _ Y Y £
oD he © @D tyhor ‘ (11.86)

t 9, ___ Y T
&-4) hn,, T Y(&-1) + 'g‘Ev + l:'l"‘ 49 (I1.87)

t or adiabatic point explosion problem, Egs. (II.54), (II.85) and (II.86) yield

the familiar boundary conditions for blast waves, namely

A =—£—i—(i-‘d) (II.88)
1
hp = *;-%—5? (11.89)
and
9 _ 2¥- Y(-1)
n = X (¥+4) (II.80)

while, for the reactive medium with heat released takes place instantaneously

at the front, Egs. (II.54), (II.85) and (II.87) yield

" S
Fn ;.(1-&1):'-(1-‘:! )’_z(%%)‘d‘i-] : (II.91)

T+l ¥+l
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For any given shock strength Y , there exist two possible solutions repre-
sented by the two signs in Eg. (II.91)., The plus sign denotes the overdri-
ven detonation solution, and the minus sign the weak detonation solution.
The unique Chapman-Jouguet solution is obtained when the two solutions coin-
cide, i.e., when the terms between square brackets in £q. (II.91) equal zero,

yielding

HCJ' =Bt g 4] i‘/[(ixz-i).q-r 1]’ 1 (11.92)

with tne minus sign applying for detonation, while the plus one for deflagra-
tion, In general, only the overdriven detonation solutions are of interest;

and one may discard the bottom sign in Eg. (II.91) for weak detonations.

Thus:

—
- 4.4 4.4 2__ ¥-1 .
fa = ) "’[‘zna) 2657 Y4 (II.93)

and

Y (L I (DL I (11,90

The other two boundary conditions for hn and 9% are still applied through
Egs. (II.54) and (II.8%5]).

4, Integral raletions

The mass and momentum integrals in tha cass of perfect gases are ncot changed
ard have the same forms, given by Egs. (11 64) and (I1I.68), except for the
momentum integral, Eg. (I1.68], C; changes tc § . While the snergy inte-
gral, Eq. {II1.73), reduces ta
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3=°ff(_ F L] haldx

- (J'-f 1)

vwhich, for a sourceless flow field, becomes

_ﬁ_{f(’”).* 4 z{‘i

_ Y '
B [} *(a'u)iar—ﬂ) (d+1)] ffhx’ /Jch 99)

‘Ta = . (II.96)
5 G- T dad)
and, the decay coefficient takes the form
A= G+ - m'-n -44
(I1.97)
Cr -y dds
d9
?, which, for adiabatic poin* explosions, reduces to
' : )
1) J3 - — v
b A = (1) ﬂa’é’" 2 (I1.98)
. &¥
:-‘ 03 - H J
.:. g
E
-
11.9 CASE OF SELF-SIMILARITY
k. The welf-similar motion of a medium is one in which the number of independent
variables in the fundamental system of equations is reduced from two to one,
X thus, the system of non-linear partial differential equations is reduced to a
E: system of ordinary differential squations. Howsver, the value of this solution

is confined to the sarly time regime when the shock wave is strong enough to

neglect the effect of counter-pressure. This, consequently, means that the

L TR
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front propagation velocity is very large approaching infinity. Thus,

Y=o (1I.99)

1. Governing equations

Subistituting this condition of self-similarity into governing equations, Eqgs.

(I1.20), (I1,22) and {II1.27) yield respectively

(th) j: + dx"""xﬁ €, (1I.100)

(ﬁ_&)jﬁ Tf—_“‘ii & (II.101)
- A+ (_%K) J_g. -["[Q"Lﬁ‘.).fi_é.] =% (11.102)

For a perfect gas, the energy equation reduces to
_1 1‘_(F‘;]?c) 49 _ g[(/’;:@ _j?] =& (11.103)

whule ¢E is given by Eq. (II.84).

Thu above set of equations 1s an ordinary differential one, which can be solved

nunerically once the source terms are specified.

2. Boundary conditions

Tha boundary conditions in this case are simply obtained by putting 4 = 0 in
Egs. (II.55) - (II.57), while Eg. (II.54) is still applied without any restric-

Vo1 _v e .
A

-




-31-

tions. Thus, one has the following relations

9, = £ | (11.104)

2

Op = S0 (II.105)

where Eqgqs. (II.56) und (II.57) reduce to a single esquation given by Eq. (I1I.105).
This means that the heat released at the front is negligible in the self-simi-
lar solution compared to the initiation energy, E; , which is the predominant

parameter governing the flcw field.

For a perfect gas, the boundary conditions, Egs. (II.54), (II.104) and (II.105),
yield the following relations:

/‘ _ 2

n - —5;:—1— (II.306)
- 1

hn = ::Ti (I1.107)

ﬁ" = zrii (II.108)

3. Integral relations

The mass integral, in this case, is given by Eq. (II.65), since for strong ex-
plosions the double integraticn in the right side of Eg. (II.64), which includes

the effect of mass source term, will equal to zero. On the other hand, the

r
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energy integral still takes the form
i 2 .
J
J, =j(a~+_z£)hx dx (11.108)
(-]

while the right side of Eq. (II.73) leads to a trivial solution of a; =0
fhus, the energy integral is obtained by numerical intsgration of Eq. (I1I.109)
from the flow field solution.

quation (II1.108) is reduced to the following relation in the case of perfect

1ases

. .
b
2. ~£— hx” dx (II.110)

1
- 1
Ja -of[(b'-i) h

while the decay coefficient takes the following simple form

9\ = J+1 (IT.111)

II.10. COMPATIBILITY EQUATION

At any time, the particle velocity at the center of symmetry must be equal to

zero, that is
U () t):: 0

This represents a compatibility equation which must be satisfied by the correct

solution. This equation in non-dimensional form can be written as:

F(o,4) =0 (II.112)

B
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Figure Captions
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CHAPTER III

THE QUASI-SIMILAR SOLUTION

II1.1. INTRODUCTION

The conservation equations, as derived previously, are highly non-linear, ron-
homogeneous, coupled, partial differential equations. Therefors, a closed form
solution is so far impossible, and approximate -~olutions appear tn be essential.
Mainly, three analytical techniques are used for predictirg the non-self-similar
flow field of a blast wave, the perturbation method of Sakurai (18965), the qua-
51 similar method of Oshima (1960, 1964) and the power density law of Bach and

Lev (18707,

In this chapter, the quasi-similar technique will be discussed briefly with a
complete description and derivation of this method of solution to be applicable

for any type of problems.

I11.2. TAYLOR'S SERIES EXPANSION

To obtain the approximate quasi-similar solution, one has to perform, firstly,

a douuble Taylor's seriles expansion on the denendent variables. As mentioned
priviously, any dependent variable of the problem is a function of the two inde-
pendent variables X and Y . Thus, for any dependent variable EF , the appli-

cation of the double Taylur's series expansion yields

Food) = Feaba[x-a2E) -0

’bya.

+2(x- “W-b)(wfg) + (4= b) Q‘j‘: Voo )s 2 [ 9')

+ 3@-a)(y. b).l.Z__.. v 3(x-a)(¥-b)° (_._L)
“xi>Y ~x54* ‘a,p

+ (Y- 5) (:;5? ) " ] R (III.1)

-38-
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)+ 4 Tt <;§Lb
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where @ and b are the values of &% and Y , respectively, in the neighborhood

of which the solution is to be obtained, provided that the function &= F®.Y4)
together with its partial derivatives up to {hs nth order are continuous 1n the

neighborhood of the point (@, b ).

Since one's interest centers upon the region of the flow field near thu wave

front, for any value of Mach number, onu may set
a =1

and

Eq, (II1.1) then reduces to

Fex,9)= F1,9) -(1-%)(2_.5.)’ E (120 (2F )

3 3
- 37 (+-%) (’:'g)a,s e 2

It now becomes ;o0ssible to substitute the above equation, of course with ¥-F s
h ,and 9 , in the equations of motion and proceed to ohtain the expansion

sojution in the normal fashion.

With reference to the autonomous equations (I7,32) - (II.34), only the quanti-
ti:s subscripted by } will be expanded, thus yielaing a set of first-order
ordinary differential equations identical to those of the self-similar case ex-
cept that the dependence of 3, or Y , is included only as additive algebraic

terms.  For any dependent variable & , the autonomous equations give

D 5['17

ﬁln’x.

=7 + .’;} + 7 (1I1.3)

P
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where D , 52‘% , % and 5—:} are defined in Eqs. (II.36) - (1I.48). The above

equation may now be put in the form

~4n = ‘g‘*éz.:f*z"
X XD

which, by differentiating with respect to /h } , yields
-~

! <§/AF> [g‘ryi*z;] (III.4)
. ~hF ~/n¥ XD
F where the order of differentiation of the term on the right hand side has been

interchanged. Thus, with the aid of Eg. (III.2), one has

(-—i—’,i—?-:‘-’)] #m = (TI1.5)

=~ dn —a/n.’rr
h | L7 . Yy (- x)[,‘” L |

”*/n.} '»fn.} X=d

or

F o 2bEy oo (Bthrbeyl . (L1I.5a)
REs Dl £ :

[n}\ - H, 'PH] +H ——
:[n} ?nf )z’ d-% 2—;-3( x “’)] + (III.5b)

and

—r YT ey
LR “ RN

'\/n %Ztﬂ> -(1-%)[:/ [(Gx+€3+§“7>}} +--— (IIl.%)
'\jn} "/ﬂ} n} x0 X=4

whzre, denoting > by a prime,

—\‘}
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e+FrvFoy ol b b Yoty
:(n}( % %D_L,) “(—;5-)\"'; 'Hg +F; )+(xo) (f';_-f%-rﬁ,) (III.6a)

Hx + H . Y /
= ( “';g*H“’) =Gg) (Fe+ iy + Ho) +(l5) (Be+ HpeHy))  (111.6b)

and

Gz'fG}*Gw ___- G G 6 1 VG G
‘n}( 2D ) ( )( + + )"'( )( + }'*G) (III.6c)
with

/ F / / /
F, = '37,‘% = F (F- 1;’ ) +(F_1)(F‘.._}.)
4 . / "
*FZF“ e (PF e FPT) = £ ]

. / / ,_,/ F/
+F?E'(2-(J+1)FF-.§ [z 'Z(T"— +¢_-)] (III.7)

/
F'_=_\“F F'-i c’ 2qt
1= o < ¢ >r+<,>“ FFQ{ 9
r_ v /"" _9_l_ Ff
+9[2-Z(—F—+9 +'FT')]} (III.8)
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/ / / ’ /
‘e 2f cw ) ¥ - F e e B ([ E B )

~6hi

[yt F ‘ ‘L E
.,.(___.__[__g_,;__..E)[Z - 2% £9) (111.9)
while

W o2 2He =t [FE B F w[et)Fe 8770
%= S a—r){ 2+ P[P L]

. ’ “ ¢
+ D) Fa (4 1+ 4, &5 (III.10)
/ / / 4 l‘
. = .bH} =1 F F; F, O hl—."."_.-
3} Shy (1-r>[ PR+ (g
{
h' p’ t, (-E
.;.._‘_;D T+ Hs (T._") (II1.11)
H = 2Ho = ‘ ‘F - ‘o B
o= M #[Fﬂ*ﬁpa ¢, 0-& 0]
+ H (_;E__'E) (111.12)

ang

‘. G 4 ‘ ’ ‘ F(fs1)
G, = 3ﬁ..:u_}_){f‘(rg;+r;,; )+ TFE +[IF(

Aeg T O )PF LM F) Xe £ 10 Gl (i)
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6 = 2% - L _[I(FFE +r@)+l‘rg+.§°_(9-%_)

P2 sty o a-m 3
., e
+ _g,. '] + G (5 (1I1.14)

-V {r<r5’+r’g,)+r’re,-(rqs,,m;)o

w i}  (1-F)
- (r‘qg; +["'45” - ¢£’_ )0 + G, (Tf':;’) (1I1.15)
where
(-5:'-5-) = ;—zg)‘ -(—-—) [2 +2(-F)F"] (I11.16)

Now, for simplicity, consider the case of perfect gas with constant spscific
heats and constant 4; . For adiabatic point explosion, the boundary condi-
tions are given by Eqs. (II.88) - (II1.80), and since

‘4 -~ 7
7'e2f <2428

one may then evaluate Eqs. (III.7) - (III.16) at %X = 1 , by noting that

F;,z,l;q =%2;-4-(1-5)

F; = F;‘/ = -ﬂﬂ(_;%—i-)

SRR
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F'= £ =gZ) (AY) (A +9 43)

¥
n r-1 +24

S5
i

hy = (AY) L=2st)
(-1 +24)"

h';: -2 (¥+1)AY [‘ 424 LA Hj"ga]

(,_1+25)‘ ¥-1+2Y

9, 2% -(¥-1)4

T T ren
g - . =) 2Y
X (¥+l)
" (x-i) 4
9s - A9) (A9 43)
- 90 - X - (x-2)4] [¥-
z, = ek 1) [2% - (x-0)d] [¥-1+24]

z, = A4 {2 (23-(&_1):{]-<x.1)(x-i+23)}
(¥+1)

The above equations, then, give, far any order of the expansion, algebraic ex-

- h -9 ;
pressions for %7;3 , SA T and =] . These may be substituted
in F& s H] , and Gj , respectively, to yield a set of first- order autono-
mous differential equations with respect to the field coordinate X , where Y ,
A and its derivatives appear as parameters. The gasdynamic flow fields may

now be obtained for each value of Y , where A and its derivatives are found

gither from experiment or from the energy integral, by integrating these auto-

b
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nomous equations.

111.3. QUASI-SIMILAR METHOD OF SOLUTION '

The concept of the so-called Gshima’'s "quasi-similar” solution states that the
derivatives of all dependent variables with respect to the front coordinate,

¥ or Y , are considered constants in all of the flow field and equal to

those corresponding to X =1 . This concept arises from the fact that the

variations of the dspendent variables f , h , and 9 are not sensitive to
the independent variable § , or 4 , as compared to their variations with the

other independent variable X . However, this assumption causes the solution

to be accurate for high Mach numbers, corresponding to small values of Y ,
and just behind the wave front.

From the mathematical point of view, this method of solution may be considered
as the zeroth order of the Taylor'’s series expansion of a function of two in-

dependent variables. It follows from Egs. (III.S5) that

~f _/f III.1

=7 = (=3 )x=1 (III.17a)
sh -, 2hy . (III.17b)
:‘? (Vﬁ )%.:4

23 - (29 (I11.17¢)
Y Y ‘Az

This leads Oshima to express the non-dimensional dependent variables in the

following form

"[

R
}! - ,
v 7,

- .

Y

[
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Fx,4) = fexr. £ 4)

h,9) = h . h(9)

and

9 x,4) = 9cx). 9, (4)

Differentiating the above equations with respect to 4 , one obtains

~> FeY) _ Food)  dEc)

£ e Ty (III.18a)

Shwd) o hed)  dhacd) (I1II.18b)
- Y h,(4) d Y

~9@.4) _ 9¢x%4)  d 9. ¢4) (III.18c)

=Y 9 )  d9

Taking the values of h (Y ), h, (Y ) and 9, ( Y ) as their values at the

wave front, yilelds to the required solution.

For constant ﬁ; and when the medium may be considered as a perfect gas with
constant specific heats, Egs. (III.18) may be obtained simply from the boundary
conditions of adiabatic point explesion, Egs. (II.88) - (II1.890), or from the
boundary conditions of reactive detonating blast waves, Eqs. (II.54), (II.85)
and (I1.93).

1. Adiabatic point explosion

In this case, one obtains from Egs. (II.88) - (II.80)

RS 4
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FITO RN E (I1.19
Py d9 51 @) 5
dhad) _ dha . _ _20+8) (II1.19b) '
dY dy (5-1 +239)* i
49 = d 5. (E=1) (III.19c) : |
d9 dyq ¥ (S+1)
Substituting Egs. (II.88) - (II.S90) as well as Eqgs. (III.19) into Eqs. (III.18) e
yields, respectively :
> F £
R S M (III.20) —
Y (1-4) -
1_‘\_ e 2h (II1.21) .
E ¥-1 429
and
ik @-1) 9 (III.22)
Y 25 -x-4)Y

Substitution of Egs. (III.20) - {(III.22) into governing equations, Egs., (II.20),
(11.22) and (II.83), yields, respectively

15-';-"—"%‘-*”5%*3% +ﬁ/4=q25” (I11.23)
(f-x) df 1 d9 = .
fo il T pNC] QBF (111.24)
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where

As - 24
(¥-1) + 24
B .Yl
2 (1-Y)

G = -[. 2% . o+ Kfq]
2Y . (x-14)4

Thus, the gquasi-similarity assumption has reduced the set of non-linear par-

tial differentail equations to a set of ordinary differential equations with-

uut making the strong shock approximation.

Solving for the derivatives

one obtains

Jf _ ALE 423G + A h(B, -0B) - ¥I(dy -A) -9 &,

df  dh 39
Zp_c' :;and az

in Egs. (III.23) - (III.25),

h (f-2)* - ¥9
-éL -'.'..'.'—A— d ‘..L-'- -
dx (/-x)fT’%”"‘ AA q‘”]

dx

B S

99 = h [¢-x)dE L AFB ]

(III.25)

(III.286)

(II1.27)

(IIT.28)

-
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2. Detonating blast waves

Applying the same previous procedure, one arrives finally at the same Egs.
(II1.26) - (III.28), except for the parameters 4 , @ and G , which will,
with the aid of Eqs. (II.54), (II.85) and (II1.93), take the following form

where

db . ,-Y4
@ =ddh >[

1 (%)-&-(8-1)2{-
s+1 +t R

/(2% )‘.. a(%}) 5@

II1.4. ADIABATIC INTEGRAL

In order to find a check on the numerical method used for solving the governing
equations of the quasi-similar soclutions in the case of sourceless adiabatic
flow fields, one may derive an intermediate integral, the so-called adiabatic
integral. The continuit¥ and energy equations, Egs. (III.23) and (II1.25),

can be rewritten for sourceless flow fields as

(F-x) égf”;ﬁ+i‘é+f.é+%ﬁ=o (I11.29)

b

e 4

.

. ¥ PO <,
s, - o 7
d et L
PRI

+ o - 2z

o
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(k-2 é&%’z - ¥ (F-2 —‘-‘;j—;‘—,’- +AC =0 (III.30)

with

Y1 424 B:‘

and

‘hﬂvm, ,,.mwv- ,A,, <4 _
-

Ca-2% [ 4 - q ] :ui
2Y¥ - (¥-1)Y g-1 +2Y4 o

To fipd the adiabatic integral from the above two equations, one may multiply

the first of them by an integration factor Y and then subtract Eq. (III.30) N
from it, one obtains .
) [(¥eg) doh _ 46 df _ 4 1Ly
(f [(+>Jx il R RR Y-
. |
+ ¥+ A(YA_C) =o0 (II1,31)

For the above equsiion to be integrated, the value of the integration factor «

¥ will be chosen as to satisfy the condition

Jy 2-AGPA.C) ¥
: ;'|
from which one gets

1+1 + A A - {

Or, with the use of the definitions of ; and G ,
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Y = 2% ['5/(zr-1¢z~.4)-1'/(“’*-‘7-”ll (11I.32)
d+1 2229 / (5-4+24)

Therefore, Eq. (III.31) will be

which yields upon integration
hY ! g
5 [h x (x—f')] = K

where K is a constant of integration which can be determined from the boundary

conditions, €qs. (1I.88) - (II1.80), one gets

¥
5 @et) [ d) / (r-1 4 29)]
(2¥- 89+ g)

i

Therefore, the adiabatic integral will be

, 23[9/ 10 29) - 1/(2 8+ 9-89) .
_‘.,: [th(x_f)] et -2A4/(5-44+29) = g(x+1)[w+1)n-4+25)1.(111'33)
(2¥-¥9+Y)

In the case »f strong explesions, Y =0and A = J+ , the above integral re-

guces to

Wt

-4

1.




@7

[

EiaioNl S At

ST R

-50_

y : ]
%_ [A x’(x—f)] = (¥ (ni) (111.34)

The adiabatic integral, Eq. (III.33), has been used as a8 check on the precision
of machine computations. The step size A X in the Runge-Kutta method was
assigned different values until the values of /', h and 9 , obtained from
the numerical calculations, satisfied Eq. (IIX.33) in a desired accuracy.

III.5. SINGULARITY ANALYSIS

In order to analyse the singularities of the governing equations, it i¢ more
convenient to transform them into the phasse plane, i.e. in terms of the reduced
variables £ and 2 defined by Eq. (III.16), which are, for a perfect gas

Z(x,9) = ‘h and F(x,9) = -,é (III.35)

In the governing equations for quasi-similar solutions, one has derivatives
with respect to X only while the variable Y appears as a parameter., There-

fore, one can write

R R

R

and

i
]
NIF\

4 JdF = 1
F dx F

The above two squations combinea with Eq. (III.35) when substituted in Egs.
VII1,23) through (III.25) give for a sourceless flow field

T
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(;:1)%{:76.*.[-‘%%3({;1*%&) +d=0 (1II.36)

z JA/:_ ﬁx [(Fre .42 . aré]h% J’;_ +(F-4) =0 (II1.37)

(1-¥)(F- 1) JJ/;A . i":_z (2(F~ )+ A C] + (F-1) %.’;TE xo0 (II1.38)

Solving for the logarithmic derivatives Jf&ﬁ , dbx and dbz , one
F dF dF

gets

dbih _(F-1) (AN +F) -AF(F-4)B + Z (AC/Y) (I11.39)
dF (F-O [ FF- ) 4 A F(F-1)B = Z[F(det) + AA + M/a’]}

2
d dlox . £-d-0 (II1.40)
df FIF-1 « AF(F-1) B - Z [F(f¢3) + AA + A G /]

dbhz _ -1 [cr-s)’<na+fr) -A F(F-1) 8 + ZAC/g) (26942 Qz--P")

IF " {III1.41)
ED{F(r 0 AFE 08B - Z [Fiiet) + A% + AC]]

MR DOt

The Rankine-Hugoniot conditions at the shock front can be rewritten in terms




of the variables Z and F by combining Eqgs. (II.88) through (1I.90) with Eq.
(1I1.18)

Z,=2Z1,49) = (25 - ¢r-)4] (r-2+24) (111.42)
(¥+1)
Fo= FA. ) =20 (1-Y) (I11.43)

Eliminating Y from the above two equations, one obtains a relation betwesn

Z, end B . It is

Z, =(1-R) (1+ L1 R) (II1.44)

It is obvious that the solution of Egs. (III.26) through (III.28) will diverge

when the denominators vanish, This will happen aiL the values of X glven by:

X =o (III.45a)

X =F (1II.45b)

Xz f ¢ g:ﬂ (III.45¢c)

The divergence of the solution at X = 0 may be avoided by expanding the fluid
properties in terms of X near the center of symmetry. The continuity anu

momentum equations for a sourceless flow field, after some algebraic manipula-
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tions, can be written as
- i 1y _
2= (fr’) + ';O.F.(Pur ) =o (III.46)
2o (Pu) & LUt + 2 (P 4 28 =0 (111.47)

Integrating Eq. (III1.46) with respect to ¥ , one obtains
1‘ r J e
— )
Pur’ = _of ri(2F) dr + Gonit,

unde? the conditicn that W = 0 at r = 0, the constant in the above equation

will be zero, and this squation becomes

ro.
wt) = - Ao friaf) dr (I11.48)

_In a similar manner, Eq. (III.47) upon integration with respect to r, yields

r r.
_ 2 ) 3
Pirt) = - Pu _oj 3_%. Ar.of..JF Futdr 4 Gast,

Also, in order to determine the constant in the above equation, we use the

condition that &« = 0 at v = 0. Hence, the above squation becomes

P 2 (M~ (pw) F ipul
() = Peost) - put- f e dr - f L dr (11I.49)
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Differentiating Eq. (III.48) with respect to time and substituting into the

above egquation, one gets

o r r ro
2 4 2 [ 3
Pert) = Plost) - sul~d [ L4 dr *,f'f'f./ r‘(}t{-wr (III.50)

Assuming that the density f(r,t) can be expanded in the following powsr

series near the center of symmetry

Pty = r* [ L+ Ly re Bty ria-] (III.51)

where & is a constant and the coefficients ji R j& ’ j; ,-- are functions

of time only.

Substituting the preceeding series into Eq. (III.48) and integrating with
respect to ¥ , one obtains the velocity profile represented as a seriss of

the form

Unt) = r [“,Ct) + Ug(t) r o Ut) r, ......'J (1II.52)

where the coefficients «,, Uy , Uy , -~ are functions of time only.

Substituting from Egs. (III.S51) and (III.52) into Eq. (III.50), one finds

that the pressure can also be represented as a series of the form

Pnt) = Peo,t) o r**2 (R« Retsra Bewr 12 --_] (I1I.53)

where Pe,t) » P P‘ , f; s, ~-~ are functions of the time only.

o
For convenience, the three series for the density, velocity and pressure cen

be rewritten in a non-dimensional form as

P




-55" \

ha % (he + he % 4 hy 2w acl) (111.54)
F=2x(fk+f£x +,;x‘+.-_f.) (111.55)
9= 9@,4) ¢ 2%(9 + 9 X+ 9 K2em=) (I111.56)

whera the coafficlents he+ Ay + Ay 1eees b + f + £ +=-- and
9¢,4) + %% » 94+ 9, +--- are functions of Y only.

It is evident that fcr small values of & , i.8., &£ «< i, the following
asymptotic formulae hold

Fa fx (1I1.57)

hz h, % (I11.58)
Ke 2

9= 9@9+9 X (111.56)

The fact that the velocity profile is linear near the center of wsymmuiiy in-
dicates that the valus of #/% will be finite and no divergence of the solu-

‘ion will occur. !

Bucouve one cannot proceed with the numerical solution till thue contur of
symietry, the solution will Le based on matching the numerical solution,
from X = 1 to X s ® , with the asynptotic formulae fur £ ., h and 9
given by Egs. (II1I.57) - (III.59), provided that the value of & lusl be es

small as possible.

In terms of the reduced variables F and 2 , the other two singularitles,

T
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given by Egs. (III.45), correspond to
F=1.0 (I11.60)
2
Z=(1-F) (I11.61)
" The value of the variable Ff at the shock front is given from Eq. (III.43)

while its value at the center of symmetry is obtained by substituting X =0
in Eq. (III.55)., It gives ‘
F = (£ =F .

2‘30 (“ )%-o °
Therefore, the range of variation of F is given by the inequality —
£ <F £(2,)-9)

The relationship between Z and F has been obtained by solving Eq. (III.41) .

numerically as F ranged over its value at X = 1 to its value at £ = (.

Since the value of A 1is not known a priori, an iteration procedure is per-

formed to search for the correct A . The correct A may be obtained based

on satisfaction of the energy integral equation, Eq. (II.98), or it may be .
found when it satisfies the condition of zerc velocity at the center of symme-

try, Eq. (II.112). When the value of A is greater or less than the correct

one, the sclution will diverge at some non-zero values of X corresponding to

the singularity F = 10or Z .-.-(1-F)’.'

Furthermore, from the theory of ordinary differential equations, the slope

‘3% will take the indetermined value —‘o’- when both the numerator and denomi-
nator on the right hand side of Eq. (III.41) vanish simultaneously. This will
correspond to a number of singular points given as the intersection of the

isocline of zsro slops with the isocline of infinite slops.
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The isocline of zero slope is given from the following equation
. 2
Z((F.i)l(x-:l) [iF(F— 1) ~AFB]-22 4+ 2(F1) 4 <F‘-4)26}] =0 (111.62)

while the equation of the isocline of infinite slope is

(F_:){r(n 1)+ AF(Fa1) B = 2F (401) ~Z A (A + CN)] =0 (III.63)

]

Solving for Z from Eq. (III.63), one gets

Fer-1) + AF(F-1)8
F (§+1) + A (A +G/¥)

Substituting the value of £ from the above equation, one obtains an expression

for the values of F at the singular points. These valuss are obtained from

the roots of the equation

(F-1) [(r-ﬁ { IF(F 1) -AF8]) + 2001) A(f:i)c]

2
F(F-4)"+ AF(F-1)8 (III.64)

-2
Fet) + A(A+G/8)

At each value of Y , the roots of the above equation can be obtained numeri-

cally using a root search technique. Depending on the value of :\ , singular

points may exist inside the field };srs(%.i)u_g) . With the correct

value of A satisfying the condition F£(0.9) = o , the roots of the above

eyuation lie outside the field and the solution is free from singularities.




CHAPTER IV

APPLICATIONS

IV.1. ADIABATIC POINT EXPLOSIONS*

i) Introduction

In this section, a detailed solution for the non-self-similar blast waves in an
adiabatic medium is obtained. The three geometrical symmetries of blast waves:
spherical, cylindrical and planar are considered. The flow field is considered
as a sourceless one, while the medium is treated as a perfect gas with constant
specific heats. The solution is based on satisfying the condition of zero par-
ticle velocity at the center of symmetry rather than the constant energy crite-
rion. Using this condition, a considerable saving in the numerical solution

steps is achieved. Finally, the accuracy of the present sclution is discussed

by comparing it with other solutions.

ii) Problem Formulation

The basic equations governing any gasdynamic problem are given by Eqs. (I1I1.20),
(I1.22) and (II.27). For a perfect gas with constant specific heats, a source-

less flow field and uniform ambient density, these equations may be represented

as! !
F-x) 3+ AY2h L h(2E L if) =0 )
(F-x) _}é + AH:}HE ..._i_ %% -5 FA=o . (Iv.1.1)
and

(F-2) 23 +A928 4 ¥9(2E 4if)-29=0

The boundary conditions of the problem are given by the Rankine-hugoniot rela-

*This application is based on Attia (1974},
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tions, Eqs. (II.88) - (II.90), which may be rewritten as follows

5“:;(1,5)=(1-P)(1-21) ]
h,=h1,9) = 1 ' (IV.1.2)
P 4+@-pY r
and
9y = J1,9) = a-P) (- Lo y) J
where
-1
e

The application of the quasi-similar approximation on the zoverning equations,
Egs. (IV.1.1), yields tQB following ordinary differential equations, as given
by Eqs. (III.23) - (III.25) when all ¢gb 's vanish

5 |

(F-%)j"i‘. + h(f;,é.g-.‘i.é-) + AhA=z0

x
(F-x)g% .,_}t_.j_g. +AfB = o (IV.1.3)

and

(F-%)g%-rlfg(f%-fj%)q-ﬁgc =0 J

wherse

'y

-
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A=z __(1-8B)Y

B+1-B)Y
B = . Y+1
2(1-4) -
and
C = - —21
1- 2y
l+3

Equations (IV.1.3) may be put in the following autonomous form, as given by
Egs. (III.26) - (III.28), with all ¢b 's set to esqual zero

| 1¥E L a9c -afr-nrB -
dx h(F-2)" - ¥9
dh _ -h (d ‘
s = (F-x>(°‘£ +J-?f6- +AA) L‘ (IV.1.4)
and
d9 _ ' f 8 J
49 = - h [¢-x) 4 + AFB]

An overall check for the denisty profiles is the mass integral, Eq. (III.B5)},

which can be rewritten as

i [ ]
J:t ""f haldx = 21 (IV.1.5)

° Jed

Furthermore, multiplying the first of Egs. (IV.1.3) by jcj and arranging terms,

ons has

'''''''''''''

........

LE )




- 61

. '+1 . .— .
x’.g.k.(m_x‘ dh . 4%’ Trh o, AhA 2 Zo

Integrating the above equation with respect to X from X =0 to X = 1, one

gets aofter some algebraic manipulations

1 : 1 i 1 .
ofc!(%’fh)../d(%* A)_l,.(j”,,ﬂﬁ)f,l,,xd dx =o

which gives
. 1
h, (F,,-f).,.(d.,i+,42)ojh9c dx =0
Using Egs. (IV.1.2), one obtains

1
[haxldx -__1 (IV.1.6)
o J+1+AN

Consequently, the density profile obtained by the quasi-similar sclution does
not satisfy the global mass conservation. However, it should satisfy the quasi-
similar mass integral given by Eg. (IV.1.6).

The difference, € , between the two mass integral equations, which represents
the inberent deviation introduced by the quasi-similar approximation, can be
obtained from Eqs. (IV.1.5) and (IV.1.6) as

€ = 1 .

j+1 +44:X j*-i

¢ -AA
(F+1) (444 4+AN)

1
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Since both 4 and A are functions of H . the error in the mass integral is
also a function of Y . It is obvious that the error is zero when /Q = 0 and

this corresponds ta Y = 0 which is the self-similar case.

The energy integral, Eg. (II.85), is reduced to

1 2 N -(J"")
&= (AL tom ) X9 %—[T *m] (1V.1.7)

while the decay ceoefficient A takes the form given by Eg. (II1.98), which is

A = (d+) & - %D (Iv.1.8)

-y 48
dy

THe adiabatic integral, Eqg. (III.33), which is used as a check on the precislon

of the numerical solution, may be rewritten as follows

—- 4
._"_Lf [A x’(x-f')] = ! ¥ (IV.1.9)
9 (P-1)(1- _517 ) [B +4-P2Y]

with

¢ = _AC-3A)
v1+ LA

The solution is considered to be correct when it satisfies the compatibility

equation, €q. (II.112), that is

R

l
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fe,49) =o (Iv.1.10) ..
i11) Solution - 4
The governing equations of the quasi-similer solution in their autonomous form, :
Egs. (IV.1.4), which are coupled ordinary differential ones, ars subject to the
boundary conditions given by Egs. (IV.1.2). .These eguaticns can be easily inte- '-»»;
grated numerically, once the correct value of A at a specific Y i: determined. "
There are two criteria for evaluating the shock decay coefficient 2. . One is
based on the conservation of total energy behind the shock and the other is
based on satisfying the condition of symmetry, namely, F = 0 at the center of *‘;
symmetry. Although only the latter 1s used in these calculations, it may be ’ '“ 
interesting to summarize the steps of calculations which one may follow to de- Ef,
termine the correct A based on each criterion.
First of all, one should chose the values of step sizes of both % and Y . The o
whole range of Y (o0<Y<1%1) is divided into small intervals, not necessarily
equal. The step size A% 1s kept constant throughout the integration inter-
vals, and assigned different values until the values of F , A and 9 , 0b- fl
tained from the numerical calculations, satisfied the adiabatic integral, Eq. -
(IV.1.9), with the desired accuracy. .
If the solution at Y= 3; is known, then the solution at Y= 3(¢1 ( 3.’.,1
Ji + (aY); ), based on the constant energy criterion, may be computed as fol- '
lows )
a) At the value of Y =Yt , the boundary conditions f (1, Yiet ) o
h (1, tjh-i ) and 9 (1, ‘j;d ) can be computed from Egs. (IV.1.2).
b) A trial value of the decay coefficient A is then chosen and Egs. (IV.1.4) ‘f’
can be solved numerically.
c) The value of the energy integral function 3;1;‘ can then be determined
from Eq. (IV.1.7) using any numerical integration method, for example, the }

Simpson's rule.

d) For small intervals in Y , the derivative —J-‘j’-' in Eg. (IV.1.8) can be




DS i AESAEHIR NS

PO (  MAMEMEMMEGEY - INENASAMEENS | At

- 64 -

put in a finite difference form as

dds _ a8 _ e =&)y . s - J3)

=

WA Ty, a9,

Thus a calculated value of ;\ is given by

1, - (J.«ri) (‘J—J)Q; - Cyk! /I 8'('6'-#1)]
vd =
J’)[,g - Y01 [03)‘,' .- J’,)‘.] [a9);

e) The above procedure is repsated for other trial values of A and a curve
between the calculated values and the assumed ones may be drawn, The corract
value of A will be obtained as the intercept of the 45° line with the above
curve and, with this correct value, the profiles of the various fluid proper-

ties are then determired.

f) Having computed everything at ¢ = &1;‘, , on~ can proceed further until
the solution is obtained for the whole range of Y .

To obtain the starting conditions for this computational procedure, one simply
substitues Y = 0 at the system of Eqs. (IV.1.4). They becoms

iF -’-'-g-::(- A9+ -%- ff-2

x h(F-2)* .- ¥3

dh -h £ L
dx = Fox (4% +i %)

and

o
<«

|

-k [cF-x) S5 - AF 7

o
R

-—

-
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Similarly, the substitution of Y =0 into Eq. (IV.1.8) yields b
A= d+14 -
~
The boundary conditions, Egs. (IV.1.2), become Y
£ = 1. B = 2
n Y+1 :
h, = 4. = ¥+t
n Je) >-4
[ ot
and '*
9 = 4. P = 2
n 5+14 ' e
o
Fortunately, this system of equations has been solved exactly using the concept .
of self-similarity. Thus, the value of 0',)0 (a Y = 0) can be determined and .
is used as the starting value for the computational procedure. -

On the other hand, the solution based on zero particle velocity at the center

" of symmetry, which is applied here, required the following calcula*tion staps:

a) At any value of 4 , the boundary conditions £ (4.Y), h(1,4) and
9(1,Y) caen be computed from Eqs. (IV.1.2).

b) A trial value of the decay coefficient A is assumed and Eqs. (IV.1.4)
can be integrated numerically. Oue to the singularity at the center of symme-

try, the integration is stopped at X = X which is arbitrarily close to X = O.

c) The velocity at the center of symmet., can then be obtained using li-

near extrapolation from x =X to X = 0,

d) The above procedure is repeated for several values of assumed decay ca-

efficient and @ curve 1s plotted between the assumed value of A and the velo-
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city at the center of symmetry. The correct value of A is obtained as the
intercept of the above curve with the line F = 0.
e) With the correct value of A determined, the flow field parameters are

to be obtained by matching the numerical soclution, as X ranges over from
X =1to x=X , with appropriaste asymptotic formulae valid from X = X

to £ = 0, as that given by Egs. (III.57) - (III.59), which are
Fef x
h = hw QCC‘

and

9= 90,4+ 9 X2

The va.ue of /; is determined as

f‘ ¢Y) = .F (d?)”)
° x

'consequently, the velocity at any value of X ﬁf is given by

Foogy = £ED x

x

Lne may now proceed to determine the density and pressure profiles near the

wuenter. The exponent of can be determined from the following relation

4
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h(X,4) = (—Z% 3
I’l(f-d%}ﬂ) K- ax

where AX is the step size used in the numerical #4terativs integration.

Having computed & from the preceeding equation, the value of the function ha

can be determined from

ho (4) = h(Esd)

Thus, the density at any value of X < X can be obtained as
h(X,4) = h, (9 2%

In order to find the pressure profile near the center, one must first determine
the functions Y(o,4) and 90 (Y) . They can be obtained as the sclution

of the two simultaneous equations

9(E,9) = Yo4) 4 Gc9) TT°

and

9 (E_ax,9) = 90,9 + 9,¢4) (£ an)™ "’

Solving for the unknown functions 9 (Y) and 9(0,Y) ., one obtains

9 (y) = J(FK-a%,9) - 3(%,4)

_ 2 _
(T-anx) . g xr?

[




9 '{‘-*“'*’F el el A
BN

_Ba-

and

o+ 2 —
* 9(X-22x.,4)

Go, 4y = (EoarD " 9B - K

_ o+ 2 — al+2
(Z-a)" ™" - &7

consequently the pressure at any value of X < X is given by

— 2
9 ¢x,9) = 9.4y 4 9,0 £

iv) Results and Coriclusions

The self-similar solution is illustrated in Figs. IV.1.1 to Fig. IV.1.4 ; ¥=4.4.
It is seen that the pressure immediately behind the shock wave is a maximum
and falls off quite rapidly near the shock wave to a nearly constant value for

X £ 0.5, As expected, the fall-off in pressure is greatest for the spherical

‘case, with its greatest freedom for expansion, and least for the planar case.

The same tendency is even more accentuated in the density profiles, whers it is
seen that nearly all of the mass of the gas engulfed by the blast is concentra-
ted close to the shock front itself. The effects of pressure and density chan-
ges are reflected in the temperature profiles, since 7 o« P/ . It is seen
that, subject to the assumption of an inviscid, non-conducting and non-radia-
ting gas, enormous temperatures are developed towards the center of the blast,
as a result of the prevqiling vanishingly small densities and finite pressure.
This is particularly marked in the sphevical case. The particle velocities de-
crease from their maximum values immediately behind the shock front to zero at
the origin of the blast. It is observed that the curves differ only slightly
in the range 0.5 X ¢ 1. At any given X , the spherical flow velocity is the

lowest and the planar velocity the largest.

During the decay of the shock front from its strong limit, self-similar case,

to a sound wave ( M = 1), the quasi-similar model is used to predict the non-
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self-similar case based on satisfying the cchdition of zero particle velocity
at the center. This criterion is, of coursz, not new. It was used previous-
ly in finding higher order terms in the perturbation technique (Korobeinikov

and Mel'nikova (1962); Bach and Lee (1968)).

Conditions behind the shock, as given by the solution based on the above men-

tioned criterion, are shown for air ( ¥ - 1.4) in Figs. IV.1.5 - IV.1.16:
they define the motion and the changes of the state of the gas in the three
cases for J =0, 1, 2 and for different values of the shock wave Mach number.
It is observed that the decrease in the shock Mach number causes the pressure
to be uniform in the whole range until the Mach number approaches unity

where the pressure becomes vanishingly different from the ambient pressure.

It 1s also seen that at. high values of the shock Mach number (M > 3) the
density falls off very rapidly behind the shock. At low values of the shock
Mach number, the mass engulfed by the front becomes equally distributed inside
the wave and the density approaches the ambient density JZ everywhere except
at X = 0, Particle velocities decreqse as the time passes and tend to zergo

when the shock wave attenuates to a sound wave.

The usefulness of the derived asymptotic formulae, Egs. (III.57) - (II11.59),
is apparent in the neighbourhood of % = 0, where the original equation shows
a singularity. In this region, the velocity distribution is linear. Close to
zero, the pressure is finite and avymptotically constant to the X coordinate.
The density approaches zero very rapidly indicating that the gas i: displaced
from the center of the sxplosion. The temperature distribution T « vashows

a steep increase to infinite values.

In the course of high temperature processes within the blast th: specific heat
ratio, ¥ , differs from its initial value of 1.4. Therefore, the solution is
also obtained, when assuming air to behave as a perfect gas wilh a constant

average value of specific heat ratios of 1.2 and 1.3. Figures IVv.1.17-IV.1.20
show a comparison between the distribution of fluid properties behind the wave
front for the special case of 3 =1, M = 5, The trend ls the same for cther

values of M as well as for other types of blast waves (i.e. 3 =0 and 2).

The accuracy of satisfying the adiabatic integral, Egq. (IV.1.9) is the crite-

rion for the choice of the step size A in the Runge-Kutta iterative inte-

[ e
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gration. Figure IV.1.21 shows that for A&X = (0.01, the adiabatic integral is
satisfied within 1 x 10_7. It is also seen that at first the error decreases

quite rapidly with the step size and then becomes almost constant for A% <

0.005.

The integral curves in Z - F phase plane where & = ;g—% and F = 'Eé' , are
shown in Figs. (IV,1.22) - (IV.1.24) for different values cf the shock Mach
number. All the curves start from the Rankine-Hugoniot curve and all of them
tend to infinity corresponding to X = 0. It is seen that the locii of the
singularity Z2 = (1 - F ]2. Eq. (III.61), and the singularity F = 1, Eq.
(III.80), do not intersect with any of the integral curves, i.e. the solutions
are singularity free. Of course, all fhe integral curves are drawn with the

correct value of A satisfying the condition f(e,Y)= 0.

The effect of inserting values of A in the differential equation that are
less or greater than the correct one is indicated in Fig, (IV.1.25) where it

is seen that for ‘A less than the correct one, the singularity F =1 1is en-

countered while for A greater than the correct value, the singularity 2=(1._[:)z

is reached.

It may be observed from Fig. IV.1.26 that a considerable error is obtained in
the mass integral which means that the density profiles are not accurate,
However, the comparison made in Fig. IV,1,27 between the present solution and
the solution of Bach and Lee (1969) indicates that the present solution has a
wider range of applicability and, therefore, it gives a reasonable description

of the shock trajectory.

The Rankine-Hugoniot shock conditions, which represent the maximum damage oc-
curring due to the passage of tne blast wave, are shown in Figs. IV.1.28 -
IV.1.31. It is observed that when the blast expands, the pressure, tempera-
ture and density behind the shock wave approach the atmospheric conditions
while the velocity behind the shock wave tends to zero. The relatiun of the
shock wave attenuation is shown in Fig. IV.1.32, where it is seen that the
shock Mach number approaches unity when the shock radius tends to intinity.
The relation between the shock radius and the time is shown in Fig. IV.1.33,
The decay coefficient ubtained by the prese%t criterion is shown in Fig.

IV.1.34 as a function of ﬁ{ for the three types of blast waves: spherical, cy-
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lindrical and planar. ’

The present calculation is compared with that of Oshima (1864) in the A- Y
curve, as shown in Fig., IV.1.35. It is seen that the present results give a
slightly greater velue for the decay coefficient. However, since the flow

field is very sensi.ive to 2_ , this slight change may change the flow field
considerably.

It should be noted that either the zero particle velocity criterion, or the
energy integral criterion is sufficient in iterating for .he correct solution.
However, it was found that the solution based on zero particle velocity at the
center is by far more sensitive than the energy integral to very small varia-
tions in A as it approaches its correct value. Hence, highe. accuracies in
the solutions can be obtained using the zero particle velocity criterion. Fi-
gure IV.1.36 shows the variation of the particle velocity at the center F(o,s)
with the assumed value of ?\. It is observed that any small change in the
value of the decay coefficient produces a considerable change in the velocity

at the center. 1In the present calculations the velocity at the center is con-

sidered zero when | f(o,¥)] < 1077,

The iteration by the energy integral criterion is not raepidly convergent. Fur-
thermore, when ?\ approaches its correct values, the properties of the solu-
tion by the zero particle velocity criterion, such as the position of the sin-
gular points and whether the velocity at the center is positive or negative,
may indicate the direction for the correct values of the decay coefficient. In
addition, reducing the step of the numerlcal integration, results in a consi-

derable saving in machine time.

The difference between the results obtained from the two critaria is due to
the guasi-similar approximation which reduced the partilal differential equa-
ticns to orginary differential ones. It should be noted that if the governing
Giuations wers scived gexactly, the two criteria would result in thu sdhe va-

lues of the decay coefficlent and the flow field variables.

e
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Figure Captions

- Fig, IV.1.1 Self-similar pressure profiles for intense planar, cylindrical

and spherical blast waves with ¥ = 1.4.

Fig. IV.1.2 Self-similar density profiles’' for intense planar, cylindrical
and spherical blast waves with ¥ = 1.4.

Fig. IV.1.3 Self-similar temperature profiles for intense planar, cylindri-
cal and spherical blast waves with ¥ = 1.4.

Fig. IV.1.4 Self-similar velocity profiles for intense planar, cylindrical

et

and spherical blast waves with ¥ = 1.4,

Fig., IV.1.5 Pressure distribution behind the wave front for spherical blast
waves at different values of the shock Mach number M while
¥ = 1.4,

< ot e P

Fig. IV.1.6 Density distribution behind the wave front for spherical blast
waves at different values of the shock Mach number ¢4 while ——
¥ = 1.4. :

Fig. Iv.1.7 Temperature distribution behind the wave front for spherical

blast waves at different values of the shock Mach number M v
while ¥ = 1.4.

Fig. IV.1.8 Particle velocity profile behind the wave front for spherical
blast waves at different values of the shock Mach number M .

while ¥ = 1.4.

Fig. IV.1.9 Pressure distribution behind the wave front for cylindrical

blast waves at different values of the shock Mach number ™M

while ¥ = 1.4.
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Densicy distribution behind the wave front for cylindrical
blast waves at different values of the shock Mach number M

while ¥ = 1.4.

Temperature distribution behind the wave front for cylindri-
cal blast waves at different values of the shock Mach number

M while ¥ = 1.4.
Particle velocity profile behind the wave front for cylindri-
cal blast waves at different values of the shock Mach number

M while ¥ = 1.4.

Variation of the pressure profile with the shock Mach number

M for planar blast waves while ¥ = 1.4,

Variation of the density profile with the shock Mach number
H for planar blast waves while ¥ = 1.4.

Variation of ihe temperature profile with the shock Mach num-

ber M for planar blast waves while & = 1.4.

Variation of the particle velocity profile with the shock Mach

number M for planar blast waves while ¥ = 1.4,

Comparison between the pressure profiles for different values

of the specific heat ratio while J 1 and M = 5,

Comparison between the density profiles for different values

of the specific heat ratio while J =1 and M = 5.

Comparison between the temperature profiles for different va-

lues of the specific heat ratio while J = 1and M= 5,
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Fig. IV.1.20

Fig. IV.1.21

Fig. IV.1.22

Fig. IV.1.23

Fig. IV.1.24

Fig. IV.1.25

Fig., IV.1.26

Fig., IV.1.27

_74-

Comparison between the particle velocity profiles for diffe-
rent values of the specific heat ratio while J =1 and

M =5,

Error in the machine computations as a function of the step
size a% in the Runge-Kutta iterative integration in the

case of J =1, M =2 and X = 0.1.

Effect of variation of the shock Mach number M on the loca-
tion of the integral curves with respect to the locii of the
singularities F =1 and 2 = (1 - F)2 for 4 = 2 and

¥ = 1.4,

Effect oft variation of the shock Mach number M on the loca-
tion cof the integral curves with respect to the locii of the
singularities £ =1 and 2 = (1 - F )% for 4 = 1 and

¥ = 1.4,

Effect of variation of the shock Mach number M on the loca-
tion of the integral curves with respect to the locii of the
singularities F =land 2 = (1 - F ]2 for .1 = 0 and

5 = 1.4,

Location of the singular points F = 1 and Z = (1 - F ]2 at
= 2

values of ')\ rather than the exact one in the case of 3 =

and M = 2.

The mass integral ( J + 1) J; as a functicn of Y in the
case of ¥ = 1.4,

Comparison between the present solution with the first urder

perturbation solution (Sakurai, 1854) and the second pertur-

bation sclution (Bach and Lee, 1969].
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Fig. IV.1.28

Fig. IV.1.29

Fig, IV.1.30

Fig. IV.1.31

Fig. IV.1.32

Fig. IV.1.33

Fig., IV.1.34
Frg. IV.1.35
Fig., IV.1.36
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Pressure ratio across the shock front as a function of the
non-dimensional shock radius .f for the three cases of sphe-

rical, cylindrical and planar blasts while ¥ = 1.4.

Density ratio across the shock front as a function of the
non-dimensional shock radius } for the three cases of sphe-

rical, cylindrical and planar blasts while ¥ = 1.4.

Temperature ratio across the shock front as a function of
the non-dimensional shock radius :F for the three cases of

spherical, cylindrical and planar blasts while ¥ = 1.4.

Variation of the particle velocity at the shock front as a
functior. of the non-dimensional shock wave radius } for
the three cases of spherical, cylindrical and planar blasts

while ¥ = 1.4.

Mach number of spherical, cylindrical and planar blast wave
front as a function of the non-dimensional radius } while

¥ = 1.4,

Variation of the shock wave non-dimensional radius } with
the non-dimensional time taa_/»; for spherical, cylindri-
cal and planar blasts with ¥ = 1.4,

Shock decay coefficient ?~ as a function of Y for the three
cases of spherical, cylindrical and planar blasts with

5 = 1.4,

Comparison between the solution based on the present crite-
rion with the solution based on the energy intugral criterion

for j -1and § = 1.4,

Variation of the velocity at the center with the dasuumed value
of the shock decay coefficient in the case of 4 - 1 and
M =2,
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IV.2, QUASI-SIMILAR SOLUTIONS OF ADIABATIC POINT EXPLOSIONS-- y
AN ANALYTICAL SOLUTION* ' e

i) Intreduction

In this section, the quasi-similarity is introduced to study the flow field

structure of adiabatic blast waves. The formulatioan of the problem is mare -
applicable for the three geomstrical symmetries: spherical, cylindrical and
planar waves. The flow field is assumed to be inviscid and the flawing me-
~dium is treated as a perfect grs with a mean specific heat ratio ¥ . An ap- .
proximate analytical solution is obtained and the results are compared with f,s
other existing solutions. Finally, depending on these results, the validity
af the quasi-similar theory is discussed.
ii) Problem Formrulation: :t]
The conservation eguations in thelr general form are given by Egs. (II.20},
(I1.22) anu (1I.24). 7Znc inviscid and courceless flow field, all gy 1in
h thesz zquations veni=h. Moreover, when the flowirg medium is treated as a '-*"‘

perfect gas with a mean specific heat ratio, ¥ , and when {; is constant,

these equations are simply reduced to

f;—f—%— + (F-2) ?T;;Z’* h(‘_:-‘%nri% =0 !

%

3 ;3% +(f-2) 2 - A f o 7{_ :5% =0 P (1v.2.1)

}%:g}_i_(f_x).;a%_.?W+X9(§E—.~_.¢J.£_)=o J

*This application is gaced con Ustama (1864).
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The governing equations, Egs. (IV.2.1), are subject to the boundary conditions

given by the Rankine-Hugoniot relations, Egs. (II.88) - (I1.80), which may be

rewritten as follows

f, = FUF) =2 (1.9 1
T+l
9, = 90(1,%) = 25;';;?”;‘;9 y (IV.2.2)
ho=ha,3) =21 ]
¥-1 +2Y

For adiabatic point explosions and sourceless flow fields, the energy integral,

Eq. (II.95), reduces to

- (4+1)
= 4 L (Iv.2.3
5= (3 YD (-4 .) (1v.2.3]

Utilizing the concept of quasi-similarity, the governing equations reduce to a
system of ordinary differential ones, given by Egs. (III.23) - (III.25) in
which all the gﬁ 's equal to zero for a sourceless fl.i: field. Therefore, one

may rewrite the governing equations of the quasi-sirilar solutions as follows:

(f-x)é%c..,.h(é_i_.*d.f_)-f-ﬁlqk:o i
(F-X) 'jji .,._.;i;_ 9’_}92 + ABFf =o0 , (1V.2.4)

.
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where :ﬂi
A= 24
-1 424 . -
]
8 = Y+t
2(1-Y4) .
and -
= A
C s 2%
2% ~(y-4)Y4
The adiabatic integral, Egq. (III.33), may be vewritten directly as : 4
y . zaACrl/(a-iyzs)_i/(zni-x:!))
h [h % -F) ZJJ Jrl - 224 /(5-14+2Y) o

K . .
= ¥(xe1) ((F+1) /(> 1424)) (1V.2.5) _‘:‘;.-j
25 .54+ 4

In order to use this integral as a check through the numerical integration,
one may introduce the following new variables

(Iv.2.8)

2
I xZ-f and K'-‘-'i--(&—;,%é

then, the basic equations, Eqs. {IV.2.4), in terms of J ang K , will take
the form




g:
.
Eru_
d
-
2
E .
;

;
F N
.
p
=
f’
;
3
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r'd
1 £ = A TiLyL X (1. L )
.g;‘_zﬂ,adi-ﬁua-d?),( + G £ (1. 2)

dK _ 1.K [%-F. d3 _ _dfy_ xX-f 4
= ["‘g"“ f&. 2(1-45) - £ ﬁ-—%] b (1V.2.7)

- 1-K [p” dl _ 4 I
= ..I_..(D..(ni):.; ..4(3-1)__’.‘_] |

where

A=t (1+9) 2
2(4-4)

, :
=[1+4 2 3
6 - [?(1—-3) 2-2(+3-X‘:J3 A+

G = Uz )
2¢4-4)

and

/ s
D = -1) (441 ,.2.2;:1.,.. ...,EEE§L2;_“__..
& )(*)+x-1+25 28-(%-14)Y

and the boundary ronditions are transfarmesd to

I T(1,4) = 4. F = ¥-1+24 .
s ( n Ui
¢ (IV.2.8)
2
K = Ke,d) = 1. (4=fa) ho o (Be(8-4)
i b’gﬁ 25~ (¥-1)Y J

Thus, the probliem is transtormed te a boundary value cne in which A is an un-
known factor for each value of 4 . An iteretion procedurse is performed until

the correct A s obtained, which must sstisfy the adiabatiy integral, Eg.

e —_

i"
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(Iv.2.5), to a sufficient accuracy. The values of A. determined are presented

in Table 1IV.2.1

i11) Approximate Relations

It is found from the calculated results that the sclution may be represented

approximately in the form

Izxxspx” (IV.2.9)

where o , B and n are determined by the boundary conditions and the asymp-

totic behaviour of I and K to X = 0. From Eq. (IV.2.7}, one has

i?é-, = Lim (Sil.)

Xeo % -0 J%
, / ‘) / &
= 914.,:10 [A+ @-1L)Lt+c —f—(i-%_)}

I

, .
A8 -4 dL
J“’x=o

thus

while from Eq. (IV.2.9)

fiz_l = K
dx

X=0
1hus
/ y
& = 4'1\-6 = i_.(‘z )( A ) KIV.':.l'),/),
J+1 J+d "t 284+ 4 -¥Y

S PR

, A

LR} rd -

o
¥ RN

. . [y X,

Lo p—Y

[V X
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L)
Also, from Eq. (IV.2.9), one has ’
In - d -" B ‘." - ‘_‘l
9
Thus
B=I.«-= ¥-1+24 + 2 -1 1Iv.2.11)
n B+ (5+4) (28 +4~¥Y) . a
while
Iy _ _31 - . |
PG T 2l O (v.2.2)
I, -« B !
whera e
/ 'I C’
dI dl 4,4y = A%, B -1n 1.4
—_— = £ * ———————— o o - ——
(5 h = 5 K, 1, =%
.9
By using the values of A vetermined previously, the valves of & , B and
N can be obtained from the above relations, These values as well as J:,
and F are tabslated in Table 1V.2.2.
*or integrating the second of Egs. (IV.2.7}, it follows that e
JK_ . Digx. EeNFE gx o do) 4x
- K 1 I x
1
wintegration of the above wguation ;1.1us
¥l -4
/ , ’
..1(1(’1..&(}:0/. dx___ I - An x .
xX+pa”
Ve d ‘ v Xl j(«'t)}
s...D,jj[”é,.. 2x )dx.(/}ni_l . X i
o Foo(nedd(oapxt)
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/

D
- (n-4 % | J'a'-'t)
= & %g _ 4 (a«-P%n 1)“ " - b (Ix 4 ¢ ] - n (const.y)

Thus
/ n DI
D ] e
. | J(X- t)_
1K = c.m:'t.1 I i +~(n-1>. ( a(N=-4)

The constant of integration is determined by using the boundary conditions at
X =1 to yiele finally

/ /
(o) ’ no
Tl ¢ ———o {(¥1) = ——r—rme
w(n-1) 2 (n-1
K = 1..(1-/(,,)(.;5-) ‘ X (=4 (Iv.2.13)

From Eqs. (IV.2.4), one has
214 (o 4
, I —=m ~ (44 4)
dh i, %, Fie7Y do
b4 L, ZRTTT

which yields upon integration .

. 214 , 224 .
A PrT o (det - 1v78) _ 4
h = Gnst. (.!-_) *®¢~1) * . X
LN ¢

Applyire the boundary conditiors yields

: 224 . 214
,#‘-""“""—"K_i*zs +1 n(.h"-x-t'zy)—j

1 o(n-1) ~(n-1)
h=h (_Iin) X (IV.2.14)
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It follows also from Eqs. (IV.2.4) that

g9 _ [ AXF L 2¥A 4 *fé};x
9 x(F-%) " 2449  (F-2) x-F
. 20 A
o (ed8, d¥eX- vy | S5k
F4 T I J
] . I
- [ . agio g 22 ]
Integration yields
b"ﬁ-o-j)

= Q’“tb (_,;_) n-1

Deternining the value of 'tk » constant from the boundary conditions yields

(nv-d'z
9= 9, (zr") n- (1v.2.15)

Equattions (IV.2.9), (IV.2.14) and (IV.z.15} are the approximate relations for

deternining the non-dimensional gasdynamiz parameters f , h and 9 , respec-
tively.

In order to determine a relation between A and ¥ , one may dirferentiate

the relation of £q. (IV.2.9) twice and eliminate P to obtain &t /o = 1!

A

Jx‘) (Io - =) (/“'I) [(ji%)n- I, ] (1v.2.16)

-
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with the aid of Egs. (Iv.2.8) and (IV.Z2.9], one has

K. = (red) 4 -Y)

T, = y-4+2Y

" ¥+ ’ T Ty 1)
dl - n’ B-d‘fn G (4.4

(g5, = A T )

g4 d1
v & [In- $+h]
(g.f;.)n = g_-I_M [ 0= 1)), - iw-11,]
n

I and o into Eq.

Subs!ituting the values of ( :I;gé)n , (1f£%)
In the case

(1V. '.16), a third ordsr algebraic equation in A 1is obtained.

of p anar waves, this equation is reduced to a second order algebraic equa-

tion and its propsr root is given by

oW 4pE
A - - (IV.2.17)

2 @

wheru

[

[
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4

?:DF J Y o= C”F”.,.D”Ellq-ell H 9=CE_/I

A= 4 [4%-2+ ¥eB)Y - (5-1) y‘] (1_y)z(x_1+z‘d)

U

B"= 2(3+9) [4¥-2 4 (54509 ~ (5-1) 4] (5 - 4+ 29)
¢’ 2.9 [25- (s-1)9)
/"

D = - 2(3+1)

E'e 4 [46-2 4 G109 — =14 ] 4 2 ety (4-9)

F”.=2[48—-2+ (X+5)3_(5-1)52]{ 4Y - 2% + 3*:}-(3-&1)(3-03)

¥-1+29 2¥-F-DY 1-

iv) Results and Conclusions:

The distributions of the gasdynamic parameters F , 3 and h. are presented
in Figs. IV.2.1 to IV.2.6 to show the applicability of the approximate formu-
lae, given by Egs. (IV.2.9), (IV.2.14) and (IV.2.15), which are compared

with numerical and Sakurai's second approximation perturbation solutions.
These are for thz case of cylindrical waves, &s an example, with two diffe-
rent values of Mach number, M = 2 and M = 3, while ¥ = 1.4. This compa-

rison proves the usefulness of these formulae. Especially, in the neighbor-

hood of X = 0, where the original equations show a singularity at the center

i
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of symmetry, X = 0, these formulae yield good insight into the problem under

study.

The pressure and temperature distributions are also shown in Figs. IV.2.7 to
Iv.2.14, for the three geometrical symmetries. These figures show that the
pressure is approximately uniform near the center of symmetry while the tem-
perature has a steep increase near the center of symmetry to infinity as a

result of neglecting the heat Liransfer effects.

Figure IV.2.15 shows the variation of A with Y for different values of ¥ ,
in the case of planar waves, by using the approximate analytical formula gi-

ven by Eg. (IV.2.17).

It is observed from the experimental data (Oshima, 1960) that the quasi-simi-
larity assumptions fail for the strong blast waves. It is alsoc clear that the
central region in the quasi-similar soclution has an infinitely high tempera-
ture core which is never realized in the actual flow. This last phenomena is
due to the fact that transport processes have been neglected in the governing
Egs. (IV.2.,1) and not due to cuasi-similarity assumptions. Later in this

chapter we shall deal with this issue.

Therefore, the region in which the quasi-similar solution is applicable is

limited to the flow fields of blast waves with moderate strength excluding the

central region.

Figure IV.2.18 shows a comparison of the values of }‘ obtained by the guasi-
similar technique with that calculated previously by Sakurai (18%4), Sedov

(1957) and Brode (1855, 19539}, all for the spherical waves with § = 2,

Sedov (1957) expressed the velocity, pressure and density as functions of A
and Y . These variables were expandad in a power series of Y , and F was

assumed tr take the form,

}’3 4.y c’M

3

then neglecting the highur corder terms, the basic equaticns were ruduced to a

system of linear differential ecquations containing the unknown cunstant A .

i

. » e »
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This value of A was de“ermined so thét the boundary conditions at % 1 and
X = 0 were satisfied. It was close to 1.92 in the case of 1 =2, Finally,

the results obtained were expressed by

_ 3
1 - 1+.1.92Y
and
3 1.92 4
F =167 Y €

Brode (1955, 1959) calculated numerically the adiabatic point explosion problem
using artificial viscosity technique, and presented an approximate formula weli
in agreement with the calculated results using the gquasi-similar technique,

which is given by

A= _3-Y4)
(1+Y)

and

3
4.629) 4 _
Fo=( )(i-tl)‘

Finally, Sakurai (1354) obtained the following results

5o
n

3 (4~ 1.918 Y)

and

FPodersy 9
(1-1.918 4)

which is also compatible with previous ones.

-~

e




» Lmemo
e N

e e e o
- T TTYTT e - - ——
KT -, i - R A

Cams Sate pane o

S Mo

'“Y a0
" R

T YT
» i
o e

Figure Captions

Fig., IV.2.1

Fig. IV.2.2

Fig. IV.2.3

Fig. IV.2.4

Fig, IV.2.5

Fig. IV‘A:Z.B

Fig. IV.2.7
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The distribution of the non-dimensional particle velocity
f based on the present approximate formulae as compared
with those of numerical ahd Sakurai's second order pertur-

bation sclutions for the case of § =1 at M = 3.

The distribution of the non-dimensional pressure 9 bassd
on the present approximate formulae as compared with
those of numerical and Sakurai's second order perturba-

tion solutions for the case of § =1 at M = 3,

The distribution of the non;dimensional density h based
on the present approximate formulae as compared with
those of numerical and Sakurail's second order perturba-

tion solutions for the case of f =1 at M = 3,

The distribution of the non-dimensional particle velocity
f based on the present approximate formulae as compared
with those of numerical and Sakurai's second order pertur-

bation solutions for the case of § =1 at M = 2.

The distribution of the non-dimensional pressure 9 based
an the present approximate formulae as compared with
those of numerical and Sakurail's second order perturba-

tion soclutions for the case of f =1at ™M =2,

Ths distribution of the non-dimensional density h based
on the present approximate formulae as compared 1ith
those of numerical and Sakurai's second order per.urba-

tion solutions for the case of § =1 at M= 2,

Pressure distribution at differant values of the shock

Mach number M for planar waves with ¥ = 1.4,
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Fig.

Fig.

Iv.2. 8

Iv.2. 9

Iv.2.10

Iv.2.11

Iv.2.12

Iv.2.13

Iv.2.14

Iv.2.15
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Pressure distribution at ditrerent values of the shock

Mach number M for planar waves with ¥ = 1.667.

Pressure distribution at different values of the shock

Mach number M for cvlindrical waves with ¥ = 1.4,

Pressure distribution at different values of the shock

Mach number M for spherical waves with ¥ = 1.4.

Temperature distribution at different values of the

shock Mach number M for planar waves with ¥ = 1.4,

Temperature distribution at different values of the
shock Mach number M for planar waves with ¥ = 1.667.

Temperature distribution at different valuss of the
shock Mach number M for cylindrical waves with ¥ = 1.4,
Temperature distribution at different values of the
shock Mach number M for spherical waves with ¥ = 1.4.

Variation of the decay cosfficient A with Y in the
cass of planar waves while ¥ =» 1.2, 1.4 and 1.667.

Comparison of the valuss of A based on the present ap-
proximate solution with those of Sakurai's (1954),
Sedov's (1957) and Brode's (1955, 1959) for the spheri-

cal waves.
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o
i

1.4

1)

1.867

1.1

1.2

1'4

1.6

0.8264

0.6944

0.5102

0.3906

0.25

0.1111

0

0.076

0.150

0.284

0.390

0.530

0.74

1'0

0.078

0.156

0.284

0.410

0.550

0.78

1.0

0.152

0.304

0.568

0.772

1.058

1.458

2.0

0.24

0.474

0.870

TABLE IV.2.1 - Values of ‘A

Mot e sk -
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M Y =4 B n dy ¥
1.1 0.8264 0.8385 -0.0832 7.6490 2.2604 4,254
. 1.2 0.6844 0.8811 ~-0.1356 5.2478 2.1356 1.738
j:0 1.4 0.5102 0.7812 -0.1923 3.2262 1.8690 0.880
& - 1.4 1.6 0.3906 0.7048 -0.2126 2.8645 1.7505 0.505
2.0 0.25 0.6074 -0.2323 2.4248 1.5949 £..58
1.7 0.8264 0.9439 -0.,0741 7.9433 1.3228 9.8619
j 1.2 0.6944 0.8913 =0,1205 4,9668 1.1377 3.5334
=0 1.4 0.5102 0.8103 -0.17786 3.3412 1.1235 1.4229
5 : 1.667 1.6 0.39086 0.7332 -0.1902 3.0941 1.0938 0.7688
2.0 0.25% 0.6527 -0.2151 2.5397 1.0346 0.3789
1.1 0.8264 0.9385 -0.0830 5.7470 1.320 2.890
j 1.2 0.6944 0.8795 -0.1340 3.9918 1.0623 1.9414
= 1 "
1.4 0.5102 0.7814 ~0.1894 3.0412 0.,8533 1.2716
g = 1.4 1.6 0.3906 0.7080 -0.2157 2.6871 0.9161 0.9556
2.0 0.25 0.6082 -0.2331 2.4921 0.8263 0.6876
1.1 0.8264 0.9353 -0.0798 5.3195 0.7582 2.271
j 1.2 0.6944 0.8747 -0.1292 3.9520 0.70893 1.745
=2
. 1.4 0.5102 0.7766 -0.1846 3.0870 0.6469 1.320
3 - 1.4 1.6 0.3906 0.7085 -0.2162 2.5550 U.o026 1.121
2.0 0.25 U.6089 -0.2348 2.5021 0.5710 0.883
TABLE IV.2.,2 - Values of ¢ , B8 , n , J:, and §
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IV.3 BLAST WAVES IN REAL GASES* Py

1) Introduction

In the prevailing number of cases, with vary few exceptions, despite the high X

i
;'
)
b
t
.
~
3
5
»
I
rL.

temperaturses involved, the gaseous medium affected by blast waves has been
treated in the literature as a perfect gas with constant specific heats. How-
sver, due to the extremely high temperatures prevailing close to the centers
of blast waves, one should expect the excitation of all possible degrees of
freedom of ths internal energy of the gas. One, therefore, should take into
account such pheanomena as vibrational excitation, dissociation, electronic

exitation and ionization, as well as the influence of compressibility at high

pressures.

»

In this section, the real gas effects in adiabatic point explosions are taken
into account. For this purpose, an equilibrium thermodynamic analysis is car-
ried out in different ranges of pressures and temperatures. At high pressures,
the compressibility effect is considered using empirical formulae, such as the :*t;
Beattie-Bridgeman equation, as well as the concept of residual properties. At ‘
high temperatures, on the other hand, quantum statistical thermodynamic con-

cepts are used to determins the degree of excitation leading to dissociation

'and ionization of the gas. As formulated previously in Chapter II, the real -.9

gas characteristics are expressed in terms of two thermodynemic properties.

These are a non-dimensional speed of sound factor, [ , and the dimensionless

internal energy, 6 . The geometry of the generated field, whether it is a

plane, cylindrical or spherical, is considered. The flow field is assumed to _%.

be sourceless, inviscid, non-conducting and non-radiating.

Ty .vfy
JCRC R 8
R |

ii) Problem Formulation .

-'av'?.
.

The general form of the governing equations, including real gas effects, are
given py Egs. (II.20), (II.22) and (I1.27). In the absence of all source

?‘ terms and when {; is constant, these squations become

* This applicarion is based on Ghuonier (187%],

L ata e a2
PR R
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and
h 4
"op g +(_E_ 1)%/49 F[""‘ +(p D2 ] L
"DZt} ? x A n o
1 i
-4
where [ is defined by Eq. (II.6) as -
oy S
[ = ("["P) (IV.3.2) —
. A
! The haundary conditiuns of the problem are given by Egs. (II.54) - (II.56)
'i which may be rewritten as follows :~!
;. A— - ‘L  S— ‘ 1
n =
F
L
- ) o
o= b Inl (1IV.3.3) 4
a ., r
and
) g ¢ W
GGt hord , g
a

where ¢~ is defined in Eq. (II.15) as
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2

The mass and energy integrals, Eqs. (II.B5) and (II.73), in this case, are gi-

ven by
t
Jy=fhx'dx = 1 (1v.3.5)
° I+4
and
1 £t i o~ y -(d+1)
J;s.j(cq’_ Y hx! dx =?:-1-+-r:--} (1V.3.6)

whlle tha decay coefficient A has the form glven by Eq. (II.76) as

A= (J*”J’ - % (IV.3.7)

Yy 43
dy

iii) Real Gas Analysis

As discussed previously, the real gers behaviour is expressed in terms of two
thermodynamic preperties, namely the internal ener_y ¢ and the speed of
sound factor [~ . Thus, before attempting to solve the gaverning equations,
these two quantities must be related to other thermodynamic variables in such
a8 manner as to take into account the effects of compressibility and high tem-
perature. To this end. the thermal equation(of state may be expressed in the
form of a perfect gas law that incorporates ; compressibility deviatior fac-

tor, 2% ,» @s well as a high temperature deviation factor. #Z. . Hence, one

- A,

-
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may write an equation of state in the form

9=2 2 hé (IV.3.8)
whare
6 = .B..".:. (IV.3.9)
w!“

with R being the gas constant.
One may then think of determining appropriate forms for the dsviation factors
ZC

The compressibility deviation in the thermal eguation of a perfect gas is of-
The other

and £r .

ten taken into ccnsideration by means of semi-empirical relations.

properties, like internal energy and specifjc heats, are then calculated using

the concept of residual properties (Saad, 1961}, These are the deviations in

the real gas properties from those of the perfect gas due to the effect of

specific volume or pressure on specific heats. For example, the internal

energy may be expressed as €= e'... e, where e‘ is the internal energy of the
perfect gas and it is a function of temperature only, €, 1s the residual #n-

ternal enrergy and it is a function of both temperature and specific volume, it

is given by Rozhdestrenskii (1961) as

v
e = f [TG:?P)V— Pl dv (IV.3.10)

where v 1s the specific volume. However, the thermal equation of state can

be put in the form

P=TF£w) [1-_\_/9___3] A2 (1v.3.11)
T

! L T R ,

e

o
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where the functions f; and E. can be chosen to satisfy equations such as the
Van der Waals' equation or the Beattie-Bridgeman equation and C 1is a constant.
The above equation is found to fit the experimental data of many gases to

within 0.5% accuracy over a wide range of pressures and temperatures.

The residual internal energy may now be calculated by differentiating Eg. (IV.
3.11) with respect to temperature and then carrying out the integration in Eg.

(IV.3.10). Tnis yields

= _37.__. f ._;__ - [ Fdv (1V.3.12)

The residual specific heat €y, , difference in specific heats, Cp - ¢, and
[T may be obtained using similar relations as Eq. (IV.3.10), given by Saad
(1968). With a similar procedure, one obtains the following expressions:

Y f
c, = - £c j Do dvy (IV.3.13)
r 7—3 o0 \

-T(1+ ';2'7%) f

C (4
and
4 C v /
/_‘—-K{—E-[(i—-v—_-i_—,)ﬂ +—\-/—5—;:3 ﬁ]*.P & } {IV.3.15)

where primes indicate dgifferentiation with respect to V

For the Beattie-Bridgeman eguation, which is considered here, the expressions

fer € and & and their derivatives and integrations are

e
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R N T S R X '
/ / 2
_R Be ¢1.23by) ; F = Ao (2.38&
&S-v‘—[i""\—/‘(i"v)] )F" V’( v> r (IV.3.16)
and
, fo¢s_ &
[havepiyc -] 5 [fev =)

where ﬂ, : a R B° . b and € are constants which may be determined experi-

mentally for each gas.

To define the caloric equation ( @ = e’+ €, ) completely, an expression for
the perfect gas internal ensrgy e* should bé glven. De Broglie suggested

that particles on the atomic scale behave in a wave-like manner, i.e. associa-
ted with each particle thers is a wave with a certain frequency. The Schroe-

dinger equation, using the above postulate, describes the motion of the parti-

cle in terms of its kinetic energy € and its potential energy eﬁdt as
Ki'n
follows: '
A 87 % (€-€_ )Y =0 (IV.3.17)
{‘ Pot L] .
respective-

where ¥ and m are the displacement ¢nd the mass of the particle,

ly, while £ is Planck's constant, and

Kin ePot

Since the internal energy of the perfect gas molecule may be considered to be
associated with {rancslational, rotational and vibrational motion, in addition

to that resulting from electronic excitation, the Schroedinger equation, Eq.

n, -

e

U,
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(IV.3.17), may be solved for each mode of motion independently to obtain the

various available energy levels. These are given as

2 2 Ny \2 Na \2 "
trans =—§;&- [(!la&) +(_Ei) +(-Ei) ]
2
€, ¢ =§—47}-;}-J<J+i) : Lf (IV.3.18)
and

where N » Ny » Ny J and n are the corresponding quantum numbers, I is
the moment of inertia of the dumbell-shaped molecule and 4 is the frequency

of vibration of the harmonic oscillator:; However, for a system of N partic-
les, each single molecule can exist in any one of these energy levels, 1.e.
there is a certain distribution of molecules among available energy levels.
This distribution is govarned by the thermodynamic probability factor w/ . Ac-
cording to the Boltzmann distribution function (Saad, 1968), the distribution
of particles in the most probable case, which is defined by swW =0, is given

by

. N
N. = £ 9; e (IV.3.19)

where Z is the partition function and is defined as

-B&:
2 = = g: e (IV.3.20)

3"- is the degeneracy (multiplicity) of energy levels with the same value of

energy
and g = _13 with & being the Boltzmann constant.

ET
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and since N; is given

W
The internal energy for N molecules is € = = N; €;

by Eq. (IV,3.18), the caloric equation is put in the form

" = ¥ o= G e Fé —whT? ("D?nt) (1v.3.21)

-B¢;
: . "bz - ___i_. x W !
which is evident since =F) © yr=in ?‘é .
The value of the partition function may be evaluated using Eqs. (IV.3.18) and
(IV.3.20), after the summation sign is approximated by an integration sign,

since the separation betwesn successive energy levels is small (Lee et al.,

1863). The integration yields:

]
Eran A
-2 8r -6 &r
i+3€ T+5e T+---- T<9r
Zt p (1v.3.22)
&
?;r (144 &y i (&) fhen) T8
and :
-l
2T
2. = il
Ve - e‘TG/T J
where gr is the characteristic temperature of rotation

...
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1; is the characteristic temperature of vibration

2
2
7;5_%_

Now, according to the type of the molecules, the partition function and the

internal energy of the perfect gas may be evgluated.

For a monatomic gas, the molecules have only translational motion, accordingly

2 - v(le‘m»ﬁ'T')a/z
mon %g

and

€ =%ﬁNT

mon

r (Iv.3.23)

On the other hand, for a diatomic gas, the molecules have translational, rota-

tional and vibrational motion. From Egs. (IV.3.20) and (IV.3.21) one obtains

2 m AT Y
ZJ V( 'Z’;' ) —;-Cr(iig’;?-

and

.- L
€dia = ”2‘ ANT + NAT;H’ +<eTv/T_1)

It is to be noted that Eq. (IV.3.24) is valid for T > 6,
of most gases at T > 100°K.

]

, which is the case

|

I
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The deviation factor 2% is thus obtained from Eq. (IV.3.11) and Egs. (IV.3.16)
in the following form

q -
L #* ”»~ Y 3
Z =[t-8 h-b"h) [1-c A(.é_)] |
* -t :
-/7‘,,/1.;!_.(1_4 h) .
where }
* ﬂf *
ﬂo = o2 s Bo EBO&
L RTa
F (IV.3.25)
— & — #®* hfans
Z, e I £, i b =b& -
and .
* -
c E—g_'_eﬁ;
(% %) J
. The high temperature deviation factor, iﬁ., includes, of course, the effects
of both dissociation and ionization of gases.
During the process of dissociation, the composition of a diatomic gas A2 is

given by -

. Ay =@-) A, + 2 A (1V.3.26)

where a(d is the degree of dissociation. It is defined as the ratio of the
number of dissociated rn. lecules to the initial number of mclecules A, - The
total number of molecules at any instant is given from Eg. (IV.3.26) as

(4 + «y) per molecule of A, . Considering each constituent as a perfuct

gas, the thermal equation of the dissociating gas may be written in the form
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P = (41+) PR, T (IV.3.27)

where R2 is the gas constant of A,

To predict the equilibrium composition of the gas, or the value of Xy as a
function of pressure and temperature, the law of mass action, Van't Hoff's

equation, is applied. In its classical form it is given as

_‘f_fiil__‘fﬁ = STZ (IV.3.28)

where KP is the equilibrium constant, and QP is the heat of reaction at con-

stant pressure. These are given by
QP = & [(7) L‘.)P - (v Li )r] and Ke = _p

where ¥) is the number of molecules and l" is the enthalpy. Subscripts P

and r denote products and reactants, respectively.

The partial pressure of each constituent in Eq. (IV.3.26) is given as
= sz P 1
1+ &y

and
i (IV.3.29)

P = ..1.;29_ )
Ay ‘1+0(J J

Then the equilibrium constant may be calculated from Egs. (I1V.3.28) and
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(Iv.3.29) as
2
K = 4% _ P (IV.3.30)
1~ o

When the condition of statistical equilibrium is applied to a reacting system,

the statistical form of the law of mass action is obtained in the form

Ky = N 72 exp (=S (Iv.3.31)
P T ¢ ﬁ-r)

where €y, is the change in the ground state energy during the reaction.
Equations (IV.3.23) and (IV.3.24) represent the partition functions of the re-
actant and the product of dissociation, respectively. Hence, substituting in

Eq. (IV.3.31), one obtains the equilibrium constant in the form (Grossman,

13689),

¥
Kp =24 6 (7""’”‘6')27’3/2[4—""!’—&)] exp (52)
F; r 7 ( T Y (;I??

(IvV.3.32)
where ég is the dissociation energy.
The caloric equation of a dissociating gas is given as
€ = (1-xy) ",qz*“ldcl €t e (Iv.3.33)

Differentiating the above equation with respect to 7 , one obtains the speci-

fic heat at constant volume, Cv" as

ol

(O u!

LB
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=(@-) G, w24, Cp 1 (261, +e)('°°4’) (IV.3.34)
2

(IV.3.30) with re-

(?13&1)v is obtained by differentiating Eq.
After

The vaiue of ST
spect to temperature and using Eq. (IV.3.27) to substitute for P .

some algebraic manipulations, one cbtains

1

(;:?EJ;T:—;5.] {Iv.3.35)

(2 = X i da)[___ hw %

3

where

T o= 4

<

Using the same procedure, the specific heat at constant pressure, CP , 1s aob-

tained as

-

Co =(l-a)) G 20 _ L s
p = ( J ) ;hz-+ 2 oy Ckb + (- ) €43 + q;) (;5%#%9

with # (Iv.3.36)

) - : Tv
(:’-‘#‘)P—#<i-"4>[—f*+$*?m] )

Finally, the isentropic compressibility, or the speed of sound factor, fﬂ , is

obtained by differentisting Eq. (IV.3.27) with respect to P and substituting

in Egq. (IV.3.2). It is found to equal

L)

. S 2
= = (Iv.3.37)
CV 2—}-“J-o{j

. @

e -.

‘e
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Thus, Eg. (IV.3.30) aend (IV.3.31) define the value of a(J , and Eqgqs. (IV.3.34),
(IvV.3.36) and (IV.3.37) determine the value of [ .

Ionization is treated very similar to dissociation from the point of view of
thermodynamics. The composition of the ionized gas 4 at any temperature is

given by

A= (d-a)A 4+ o AT 4+ a; e (Iv.3.38)

where ¢« is the degree of ionization (subscript L' = 1,2 for the first and
second ionizations, respectively) and e denotes a free electron. It is de-
fined as the ratic of the number of ionized atoms A* to the original number

of atoms A4 . The thermal equation can be written in the form

P= (14 a;) PRT (Iv.3.39)

where R 1is the gas constant of A .

The equilibrium constant of ionization is determined by substituting from Eq.
(IV.3.23) for Z into Eq. (IV.3.31), realizing that all plasma constituents,

in this case, can be treated as monatomic gases. Thus, one obtains

3 512 gz 2o -
K. =4 (2T A ear "¢ exp (- & 3.
P ( ) = P (: F) (IV.3.40)
A

where €; 1is the ionization energy

Me is the electronic mass

Z__1s the electronic partition function of free electrons = 2
e
Z-e and Ze . are the partition functions of electronic excitation of
A
A and 47 respectively.

|

L
<@

,
.

}" N

-
X

——

N}

-8




BE{ S04

~

v w e
)

S “ N - “’ YT e T
¢ At X i T e e .
T T .,

-

Y. nachble age i 2 20l n o
iy P
e W

- 158 -

The partial pressure of each constituent is evaluated in terms of & using

Eq. (IV.3.38), as previously done for dissociation. Substituting in Eq.

(Iv.3.28), one obtains

X __ P (IV.3.41)

Equations (IV.3.40) and (IV.3.41) give the equilibrium composition of the

ionized gas in terms of its pressure and temperature. The resulting equation

is the Saha Equation (Benson, 1967).
The internal ensrgy of the ionized gas is given by

e 1. &) € X € :

and, since all constituents are treated as monatomic gases

¢ = (dex;)(F) RT + 40 + €, (Iv.3.42)

The value of Cv . CP and f" are obtained in a similar manner as in dissocia-

tion, thus one gets

d'
¢, :;_Rn (1+d;)+(%RRT.,.Lo‘.)(:T¢)V 1
and . (IV.3.43)
CF = 3‘5‘ RA (i*‘d") +(-§- Rﬁ'r-f d-"')(-b—:;i‘ )P .J
where

- 8

W srrm
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-:dn . Xi(d-«) (%_+j[
~T ‘v T (2-%) T
and !
&Yy o X _al 5 T
(:;;r')P = T -9 ) (3 +
with
g
while
I = % 2

)

(Iv.3.44)

(IV.3.45)

The case of multiple ionization is obtained directly by modifying the set of

t:quations of single ionization,
dued (Camble, 1963) for the nth

1 'Q‘; 412 Eﬁg

2
xn =24 (2L Mt 7’14)3/9.7 Ze,

n-4

electron to yield

Sty
T exp (- &

F

For example, the Saha Eguation may be exten-

L 1V.46)
T (

similarly, Egs. (IV.3.42) - (IV.3.45) may aﬁso be extended by substituting «

Lo replace °Q

Since the electron motion around the nucleus is very complicated, the Schroe-

LV,

-9
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dinger equation is not solved to obtain electronic energy levels. However,
since the separation betwsen successive energy levels is high, Z may be

expanded in tha form

€ A
Ze = g; +* ?; e # -+ € F-t—---- (IV.3.47)

Y

where both the degeneracies 9} and the snergles €; are determined experimen-

tally from spectroscopic data (Rozhdestwvenskii et al., 1861).

To determine the electrgnic internal energy and specific heat, Eq. (IV.3.47)
ig differentiated twice. It yields

p T - Em
2 = ¢ In eRET
(4 ”t m T.z
and (Iv.3.48)
“ - Em
Z 2 (B_2)3 In o7
e -t T [, TJ

where primes denote differentiation with respect to T .

Substituting from Eq. (IV.3.48) in Eq. (IV.3.21), the internal energy is ob-

tained. However, by differentiating £q. (IV.3.21), c, is obtained in terms

of 2, , z; and Z; ir the form

L4 /2 /
Ze - Z
Cre = _RTH( Z"'z € )+ 2RT Ze (1v.3.49)
2, Ze

The main difficulty in obtaining solutions with the series expressed in Eg.

(IV¥,3.47) 1is that it 1s not a finite sum. The terms approach infinity as the

1
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energy level ¢, approaches a constant value, namely the ionization energy.
{
However, a two-term approximation is used here to evaluate the thermodynamic

properties.
The temperature deviation factor, Z_., is then obtained from Eq. (Iv.3.27)
and (IV,3,39) for a double ionized gas as

2oz dr oy (429 (Le2a)) (1.3.50)

where
™
NEE
1+KP

*
The ncn-dimensional equilibrium constant '<P is obtained from Egs. (IV.3.32)
and (IV.3.46), after substituting for the dimensionless variables. They ars

given as
G kG g e P e )
and
Kp = KB = 0"°  Zeg eyp Gt
¢ P gy"s 2, ¢
where

and

5
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The pressure &; is in atm. and the temperature 7T 1is in °K,

The total internal energy of a gas may be expressed as the summation of the

contribution of various effects, i.e.

*
e = € [ e e, e
¥ eomp T i T Tion T Tede

that is a sum of the ideal gas internal energy and those due to compressibi-

lity, dissociation, ionization and electronic excitation, respectively.

Therefore, the internal energy may take the following non-dimensional form

P
+ 2y [o + (o)L + %, 6, Y

+ o4 {(11-0(3)@; +(1-0o) ogn +Q’z(915‘+°‘§")”
(IV.3.51)

where 67 's are obtained from Eqs. (IV.3.10), (IV.3.23), (IV.3.24), (1V.3.33)
and (IV.3.42) as
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where
e
v
and Ce

’
while both &, and Ze are given in Eqs. (IV.3.47) and (IV.3.48).

The non-dimensional speed of sound factor f‘ , which is defined in

- 183 -

1.56

2.5 8 4 6%' {0-5 -+ 1 }
[=wp (&t) - 1]

- 56*/;(3?.)3 é {1+ sfh(a.s-.b;k)}

_*
AR Y (- 2 k)

AR A
E ot 7 E  e————— J ' -3
AR A LA A C LT
2 /
= & _555.
ze

can be put in the form

The value of § is given by

= 7"%.P — ) em P
r é’nf)s =4 <’°an)

sn

b (1V.3.52)

Eq. (IV.3.2),

(IV.3.53)

Cp /CV , which are obtained from Egs. (IV.3.34),

.,
.S
——
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(IV.3.36) and (IV.3.43). The composition of the gas Az is given at any in-
stant by Egs. (IV.3.26) and (IV.3.38) in the following form

A, = (4= o) Ay + 22 {(1-«1),4 .oty € way[(L-2)A"

I

++ -

+x Ay e ] ] (IV.3.54) g
For such a gas, Cv is given by _w
= (4 E
_"-nv

s (1) Cy o + & c\,e"]} .,.(“_2;‘9;.) -o;.,.ad!!
+2{ 6] +(tauy) 02, + X, 64 + % ((1+)6
leay) o+ % (05,1 60) }] v 2 (@) [ox

T

+ 6 Y+ ;) o] +(i'“z>°;""d2(6;"+az(j)]} -

&2
+°‘,{(;—.;:—)V [GZ-";* + ";,.*'91‘5]} (IV.3.55)
The electronic specific heats C are given in Eq. (IV.3.49), while ('_‘3.% y

Ve
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are expressed in €gs. (IV.3.35) and (IV.3.44).

Since various energy modes are excited subsequently, their contribution on

(:Lﬁlf) may be expressed as
~hf'T

= 2 (IV.3.58)

(ﬁfnp) _("‘061_?)
“hf T ~h.f Comp ™ 2.4 q;l+-cg:

where m,m = d, 1 and 2.

The term <‘?-_,"§€£)Comp may be obtained with the aid of Eqs. (IV.3.9) and
(IV.3.25) which yields

~bp - IZ] -* y 3 _g" b
<7'"wf2mp“§?["c,/‘(5‘) J[¢- 8 2-6"h)]
e W
. A h“._g_ (1- .?_2_‘_‘.) (1V.3.57)

iv) Solution

al The Self-Similar Solution

Since self-similarity reduces appreciably the mathcmatical complications of

the solution, it has always been the first step in seeking a solution for

blast wave problems. The utilized equation of state of the flowing gas should

also satisfy the conditions of self-similarity, i.e. it should not contain any

dimensional constant whose dimensions are dependent on pressure., As previ-

ously suggested by Korobeinikov et.al. (1961) and Sedov (1457), its general form

is

€ = p PP) (1v.3.58)
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where ¢ is a function of density only. The corresponding thermal equation

may be derived as follows: from the first law of thermodynamics

Tds = J@-}- pdv

thus

ds =.__r..[( )Jf,,cgg) AP]...._;?..}% df

and since $ = §(P,P) , then

ds = (:!Ei) dP *-( ) dfe

Comparing the abaove two expressions and using Eg. (IV.3,57) to express the

differentials of the internal energy in terms of ¢ and some thermodynamic

identities (Thompson, 1872}, one obtains

4 - f - 1
LEE), = F
and r (IV.3.59)
{ (=P P rep’ L
S GF), s J
where
‘ d&
P = ==
d £

The above two equations are transformed into two ordinary differential equa-

tions in an isentropic process. The above two isentropic relations of the
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gas abeying Eqg. (IV.3.58) are obtained by integrating them as

Texp(-f#%)a-c;cs) 1
and ir (Iv.3.60)
P e’?(‘f}%) =Cp¢3) )

Since one can put =VY/(Cy) . the general thermal equation for a gas obay-

ing the self-similarity restrictions is obtained as
T = €x A!—- . Pp € -.d—f— > .3,
P (fP,¢ )-¥( P [ f‘¢) (1v.3.51)

A special, but important, form of Eq. (IV.3.61) may be obtained if ¥ is ex-

pressed as a linear function of its argyments, yielding

T =Bp&Hf) (IV.3.62)

where B is a constant.

The Clausius equation of state is suggested to represent the zas behavior at
high pressures and temperatures {(Thompson, 1972), since it takes into account
the effect of the volume occupied by the molecules. As it satisfies the self-

similar conditions, it may be useg hers., This equation may be written 1in the

form

N
\l

RT’-—ﬁ—m) (1V.3.53)
Y
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where P 1is a constant.

For fluids described by Eg. (IV.3.63), one has € = e@¢1) only, just as the
ideal gas, and that R = cy(x;t) . Thus

e=_R _. T (IV.3.64)

with ¥ being a mean value for the specific heat ratio.

Comparing Egs. (IV,3.63) and (IV.3.64) with Eq. (Iv.3.58), the function @ is

found to be
*
=2 X "h‘?h (1V.3.65)
(¥-1
where
*
P = £ P

The non-dimensional speed of sound factor, [~ , is found by substituting in
Eq. (IV.3.2) from Eq. (IV.3.58) and knowing that

:%%)P - Prp?

(2f) =
~8 s =&
‘tPJo
then
2 7
/_‘::-—.___( P&’ P/‘P ) A-F & (IV.3.66)
P L&

which means that [~ is a Function of density only.

R

.,
P
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Substituting from Eq. (IV.3.65) into Eg. (IV.3.66), one gets

Y (IV.3.67)
1-g*h

[ =

*
which reduces to ["= ¥ for a perfect gas ( B = 0J.

The governing equations, Egs. (IV.3.1), in the case of strong explosion condi-

tion, Y - i, are reduced to

]
o
J

(F-x) B 4 h (4L +d k)

dx

]
O

dF |, 4. A
(F-x)gz +I"jg 2 F

and (Iv.3.68)

(f"x>24£" + /4(2451*-1'—;—)9—29 =0

The decay coefficient, Eq. (IV.3.7), will take the simple form

A =4d+1 (IV.3.69)

Equations (IV.3.68) may be rewritten in their autonomous form as

y | |
df - x‘J<£'£'41) + FE-R RS _deng

dx , 2 59
h(f— ) —
(1-p%h)

dh - __h_ (dFf .
Sh o= - (<E +J%)‘ p (1V.3.70)
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and

X

(4+1)
..‘.J_g_. =-h[(ﬁ-x)g—£——’—£—f]

The boundary conditions of the self-similar flow are deduced directly from

one obtains

an
1
-~
|
lq-u

and

The value of hn is evaluated from the last of Egs. (IV.3.71) when o is sub-

' Egs. (IV.3.3),when applying the condition of Y = 0 and consequently 6a -

o
-

(IV.3.71)

stituted by fa 9% q@, ,» then after some algebraic manipulations, one gets

hn = X+1
¥-4+2p"

and

(IV.3.72)
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Since the boundary conditions depend on ﬁ*l they depend on the initial con-
ditions represented by JZ. and hence, the whole solution is expected to de-
pend on the initial conditions. However, it should be noted here that the
value of ﬁ’ for most gases (Saad, 1969) is in the order of 0.002 at the
standard atmospheric conditions. Thus, its effect on the deviation of the
gas, and consequently on the whole solution, is expected to be negligible. On
the other hand, for moderate values of initial density 4; , the problem is
greatly affected by the deviation factor p*'since it increases with ﬁ; .

The governing equations for the self-similar solution, Egs. (IV.3.70) which
are subject to the boundary conditions, Eqs. (IV.3.72), are then integrated

numerically.

b) The Quasi-Self-Similar Solution

Once the self-similar solution is established, one can then proceed to obtain
the non-self-similar solution. Before attempting to solve the governing equa-
tions, Eqs. (IV.3.1), in order to obta.~ the flow field structure, the jump
conditions across the shock have to be determined. The Rankine-Hugoniot equa-
tion is found by substituting for ¢ from Eq. (IV.3.51) into the last of Egs.
(IV.3.3) as

’

&n . hp) e =-/=.g—(1-—4—)+—}—(1-—4—) (1V.3.73)
A ha
The solution procedure may be outlined as follows

a) A trial value of kn is assumed. The corresponding value of the per-

fect gas, Eq. (I11.88), at the same front Mach number may be used.

b) The value of an is calculated from Eg. (IV.3.3) as

4. 4
o+ ( hn)

where C; may be taken as 8’, since the undisturbed medium 1s considered as

[rr S

.
‘@
>t

G
[




- 172 -

a perfect gas.

c) Equation (IV.3.8), the thermal equation, 1s scived numerically with
the aid of Egs. (IV.3.25) and (IV.3.50), for the temperature @, . The false

position method is used to minimize the number of trials needed to satisfy

Eq. (IV.3.8).

d) The values of 9 , h, and 6, are substituted back in the Rankine-
Hugoniot equation, Eq. (IV.3.73). If it is satisfied tu a certain pcrmissible
error g , the assumed value of hn is taken as the correct one. If not, an-
other trial value is assumed in the direction which reduces the error and the
whole precedure 1s repeated. Here, alsa, the false position method may be

used to speed up the convergence of the solution.

This method is straight-forward and it gives for any values of 6% and /; the
properties behind the shock wave up tb any desired degrees of accuracy. In ge-

neral, t-e equations are convergent and the number of trials do not exceed 5.

Obteining the boundary conditions, one may then numerically calculate the de-
rivatives of the gasdynamic variables with respect to 'f , which are equal to
their values at the front as stated by the quasi-gsimilar techinique. The New-
ton finite difference for differentiation is used with six points of M around
the value of M at which the field is calculated.

The computational procedure may be put in a atep-wise manner as follows:

a) For a specified shock Mach number and initial condition, the boundary

conditions and their derivatives are calculated numerically.

b) A trial value of ;\ is assumed and the integratiun of Egs. (IV.3.1) is
carried out numerically with a constant step size AX = 0.01. The temperature
@ is calculated at every step in the integration using & subroutine which
applies the false position method to sclve £q. (IV.3.8) for any values of 9
and h .

c) The integration is stopped when either of the singularitive X =/' or
%=/‘_+_'/I—"T? is encountered. According o the type of singularity, ;\ is

decreased or increased.

d) When the value of ;k is sutficlent to calry -ul lne h.agiation Lo a

i
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point near the center of symmetry, X £- 0.03, the velocity profile 1s extra-
polated to check the value of f at the center, Fa , l.e. Flo,4Y) . The
correct solution is obtained when F(a,‘J) = 0, Eg. (II1.112); however, if £,<E
where £ is a small error, the corresponding value of ﬁ is accepted. If f;

> & , the integration is repeated for values of A around this value and a
curve between Q and f; is drawn, the correct value of ﬂ is that correspon-

ding to ]-; = 0 on the curve.

It is to be noted that the gquasi-similarity approximation does not conserve
global mass, see Sec. (IV.1), 1.e. the density profiles calculated using this
method do not satisfy the mass integral, Eg. (IV.3.5). On the other hand, the
velocity profiles at moderate Mach numbers are not accurate around the center
of symmetry since in this region the particle velocity should be negative as
the particles at the stage of expansion return back to their original position.
However, the degree of accuracy is sufficient for a good qualitative compari-

son between solution for perfect gases and real gases using the same mechod.

v) Results and Conclusions

Since blast waves are high temperature phenomena, real gas effects at high tem-
peratures, including vibrational excitation, molecular dissociation, electronic
wxcitation and ionization, are analyzed to determine the thermodynamic proper-
ties of gases under these conditions. The condition of statistical equilibrium
between various species in a chemical reaction is used to evaluate the equil”-
brium degree of excitation of the reaction processes and then, the thermodyna-
mic properties are calculated considering the gas to be a mixture of perfect
gases, The analysis of thermodynamic properties for real gases is suitable for
any monatomic or diatomic gas, or mixture of such gases as in the case of air.

However, in order to simplify the computations, the data of nitrogen are used

in this application.

The effect of the potential energies of the molecules, which may be divided in-
to the vibrational energy, energy of dissociation and energy of ionization, on
the internal energy of the gas are represented in Fig. IV.3.1. The effect of

the reacting properties on the deviation factor Zy , on the other hand, is gi-

ven in Fig. IV.3.2 as a function of pressure and temperature., The first stage

. @
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represents the increase in the number of particles due to aissociation, thus

indicating the degree of dissociation., Similarly, the second stage shows o
twic: the d.gree of ionization, since each diatomic mnlecule splits into two ;?
mc natomic ones. The maximum valums of Cv and the corresponding minimum va- 'T
lues of [*, Figs. IV.3.3 ang IV.3.4, occur as a result of the rapiu increase f“
in the internal energy at the beginning of dissociation and every successive '

ionization.

- From the physical point of view, the function of density, ¢ , in the self- ;i

L

sinslar solution should be selected to satisfy one of the well-known equa-
tione of state suitable to be applied in the range of conditions of self-
similar flow. Thus, the Clausius equation of state is used to represent the
non-perfect gas deviaticn due to compressibility at high pressures, in terms —
of ﬁ"which depends on J%L + However, since both ¢ and the boundary con-

ditions depend on ja_. contrary to the case of perfect gases, the whole so-

lution should be carried out for spzcified values of £ . The results re-

presentea in Figs. Iv.3.5 - IV.3.8 are obtained for \alues of pf'= g.a, ;;
0.016 and 0.032. These values are corresponding to high values Jf fz at
which the compressibility effect duz to high pressures overcomes the effect
of high temperatures that reduzes such effect. Of course, at these high tem-
peraturves, the 2ffect of compressibility 1s neglected at normal densities. -

The results are calculated for J = 2 and & = 1.4.

Oue to the complicated form of the equation of s*tate in the case of rea' .
ses, the variati.n of the gasdynamic properties acrocs the shock wave, wh-uh
represent the boundary conditions of the probiem, are evaluated numerically
by solving tne Rankine-Hugoiot eque ion with the caloric equation of state

using the false posi.ion metnod to solve a sys.em of algebraic equations.

The density retio hn increases with the excitation of successive energy mo-
Jdes, Fig, IV.3.4, From cq. (IV.3.3]) for strong shock waves, oy = é.(;__f;‘.
Thus, as 67 1increases due to the effect of tre potential energy, An aluo
increases. OCOn the othes hand, the perfect gas density ratio for strong shock
waves, vhich 1s given by ha :-.%Er% ., may help in explaining the wequence

of wvents of Fig. iv.3.9. Since & i«creases due to viorational excjitaticn

and reaches a minimum at the beginuing of Jissociatiu ., hr) increases to reach
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a maximum at the same point. Also, the decrease of hn with Mach number during
lonization is related to the increase in ¥ , since at this region €, increa-
sas due to the increase in the number of particles which overcomes the effect

of the potential energy (Zel’dovich et al., 13686).

The temperature ratios decrease with respect to those of perfect gases due to
the expenditure of energy as potential energy, as well as the increase in the
number of particles. The high values of potential energy as compared to the
translatiw.nal energy and the increase in €, decrease thec rate at which the

temperature ratio increases with Mach number as detected from Fig. IV.3.10.

Figure IV.3.11 shows that the pressure ratio is not affected appreciably by
fhe real gas propoerties. This can be qualitatively seen from Eqs. {(IV.3.3)
which indicate that the pressure ratio varies as H/’C; , which is not affected
by the real gas properties inside the blast wave. However, since hn increases

for real gases, the pressure ratio also increases.

Actually, the density ratio curve has a number of maxima which occur at the be-
ginning of the successive ionizations like that occurring at the beginning of
dissociation. After the occurrence of total ionization the gas transforms into
a mixture of monatomic pérticles which have a constant value of ¥ = 1,667.

Thus, i;n asymptotically approaches the value of four.

The effect of initial pressure on density ratio and temperature ratioc across
the shock wave is shown in Figs. IV.3.,12 and IV.3.13, respectively. At a cer-
tain Mach number, as the anbient pressufe increases, the temperature ratio in-

creases while the density ratio decreases.

The flow fields generated by blast waves at various values of front Mach numbers
are evaluated by integrating the system of equations, Egs. (IV.3.1), with [
expressed by Eq. (IV.3.53). Using the quasi-similarity approximation, the deri-
vatives, with respect to ] , are substituted for by their corresponding values
at the front. The integration is carried out rumerically ucing the Runge-Kutta
fourth order method with a step size A% = 0.01. The computations are performed

for the spherical wave only, § = Z.

The decay coefficient 2., which is calculated using an iterative procedure to

satisfy the compatebility condition at the center of syminetry, decreases with

Pt

-

v.. @
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the excitation of the successive energy modes, Fig. IV.3.14. Althcugh this de-
crease seems to be slight, its effect is rather important since the field is
very sensitive to the value of “ ard any change in its third decimal value af-
fects the field appreciably. This weak dependence of the decay coefficient on
the field was previous%y observed by Kamel (1973b). However, the slight de-
crease in value of ﬂ,nmy be due to the expenditure of energy in the excitation
processas which can be represented as an energy sink. 1he deviation in A from
its corresponding value of the perfect gas decreases, approaching zero at

M = 2.5 where temperature inside the field is no: sufficiently high to excite

any additional energy modes.

It is logical that temperature distributions inside the field are greatly affec-
ted by real gas behaviour since a great amount of the blast energy is useu as a
potential energy, beside the translational energy. It is to be noted that when
comparing the temperaturc distribution of the perfect gas field with that of

the real gas, other effects beside the energy of excitation should be taken into
consideration. For example, when the vibrational motion of the mclecules are
excited, an amount of energy is expended which would decrease the temperature.
But, on the other hand, the excitation of vibrational motion of the atoms rela-
tive to each other increases the volume cccupied by the molecules and, conse-
quently, increases the temperature. The predominant factor of these two effects
depends on the degree of excitation of the vibrational motion. The resultant
effect may be observed in the field of M = 3 and 5 in Figs. IV.3.15 and IV.3.18.
Figure IV.3.17 shows a comparisor between the temperature profiles for the per-
fect gas, with different ¥ , and for the real gas, while Fig. IV.3.18 shows the

effect of initial pressure on the temperature profiles.

However, in the process of dissnciation and ionization, the heat of reaction is
very high and, thus, the decrease in temperature is always appreciable and the
portions of lower gradients in the temperature curves, Figs. IV.3.15 through

IV.3.18 represent the successive reacting processes.

The density profiles, Figs. IV.3.19 through 1V.3.22, are related directly to the

temperature profiles. Tnese figures indicate that the density increases behind

the shoccs front end 1n the vicinity of the center of symmetry.
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In contrast to the large deviations in temperature and density profiles from
those for perfect gases, the pressure and particle velocity profiles are found
to be less sensitive, Figs., IV.3.23 through IV.3.25, This is a direct conse-
quence of the fact that both pressure and particle velocity are related to the
par%icle translational energy. Although the direct proportionality between

the particle translational energy and tha temperature would suggest that the

~ former should decrease sharply, according to the bghaviour of the latter given

by Figs. IV.3.15 through IV.3.18, the large increase in f{.ie number of partic-
les due to dissociation and ionization, tend to offset this effect, hence the
insensitivity depicted in Figs. IV.3.23 through IV.3.25.

Finally, the changes in [" and €, within the flow field are illustrated in
Figs. IV.3.26 through IV.3.29, where their behaviour, as in the case of tempe-

rature, manifests the different modes of excltation within the blast wave struc-

ture.
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Self-similar pressure profiles at different values of the para-
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Effect of initial pressure on the temperature ratio across a

shock wave.

Real and perfect gas decay coefficients as a function of Y for

4 =2,

Temperature distribution for various excitation of internal

snergy modes at M = 3 for § = 2.

Temperature distribution for various excitation of internal

energy modes at M = 5 for i =2,

Comparison betwesen the temperature profiles for the perfect gas,

with different values of ¥ , and for the real gas at M = 7 for
i =

Initial pressure effect on temperature distribution at M = 10
for :l = 2.

Real gas effect on density profiles at M = 3 for § = 2,

Density profiles for various excitation modes at ™ = 5 for

J = 2.

Comparison between the dencity profiles for the perfect gas,
with different values of ¥ , and for the real gas at M = 7
for § = 2.

Initial pressure effect on densic, profiles at M = 13 for

I =2

Velocity and pressure distributions for both perfect and real

gases in a spherical blast wave at M = 5,
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Real gas effect on velocity and pressure distributions as com-
pared with those of perfect gas with different values of ¥ at

M = 7 for a spherical wavs.

Comparison between the velocity and pressure profiles for the
perfect gas and for the real gas, with different initial pres-
sures, at M = 10 for § = 2.

Distribution of [* for various excitation modes at M = 3 for
i -2,

Distribution of /" for various excitation modes at M = 5 for
4 =2,

Distribution of Cv with successive excitation at M = 3 for
i = 2.
= 5 for

Distribution of Cv with successive excitation at ™
J§ = 2.
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IV.4. BLAST WAVES IN A DETONATING MEDIUM*

i} Introduction

In this section, a study of the gasdynamic aspscts accompanying the propagation
of & detonation wave in & uniform combustible medium is pressnted.

According to the Chapmar-Jougust theory (Oppenhe:m, 1865}, e detonation wave,
orca formed, will propagate at a constant velocity independant of the details
af its initiation processss, and dependent only cn the properties of the axplo-
slve madium in ths front of tha wave,

The eimplest model to use @28 a basis for an initiation theory would be the in-

stantansous Yormatio; of a reactive blast wave front.

Since methena is the major constitusnt of natural gas, the most predominantly
used explosive ges mixture, the detonating medium in thia application is as-
sumed to ba a steichiometric methane-air mixture. The detonation medium itsslf
is tsken s= a perfect gas with a mean specific nsat ratio, ¥ , that is capaole
of producing an amount of exotharmic energy, 4 , per unit mass of the mixture.

‘The solution obtsinsd hers is for the non-sslf-similar flow fields that result
from insvantansous deposition of shergy at & point, along a line or at & plane
in an inviscid medium., It traces *he dscay of the datonation front fram its

inltial self-siimilar limit, carrgeponaing to the adlabatic point expiosion to

its Chapman-Jouguet condition.

i1} ®roblam Formulation

The basic equetions governing the p-chlem can be specifled directly from Egs.
/
(I1.20), (11.22) and (I1.24) by squating sll & 's as well as £a 's to zero,

8ince wg Rave a sourcwlese flow fluld and o wniform emblent medium., These

gquationg are

- —— - ——

*This spplication is based on Abdel-Rawuf {3G62).
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(1v.4.1)

The boundary conditiocns of the problem are given by the Hugonict reslaticns,

Eqs. (I1.83), (I1I.54) and (II1.85), which may be rewrittsn as

. 1 = 43
fo= A8 4 [ - 2¢84) 98] )
h = 3
n s i
anc
- Y
901 - l‘;, -f--g- _J

(Iv.4.2)

The shock strength at the Chapman-Jouguet condition of overdriven astonatior

is given by Ey. (I1.94) as

5@ = {(¥L1) 4 1] -\/[(zs‘_ )9 . 1}1_ 1

The mass ana energy integrals for the present proplem, Egs. (II.C4) anu {II.u05,

respectively, are given by

‘ v
T = (A’ dx = 4
° I+

LIv.4.31
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and

[_i___,,._r.:_‘]h;c" dx

-(jfi) -
= - i ¥ q.
¥ [} * (44 1)(¥-1) * (1+1) ] (Iv.4.5)

Tha mass integral, Egq. (IV.4.4), is used here as a chack on the density pro-
files, while the energy integral, Eg. (IV.4.5), is used for determining the

nen-cdinensional radius, § .

ne  decay coefficlent, A , takes its form given by Eq. (II.87)

)\'? “}1) J& - 15%:?3 - Q-H

U {IVIqls)
3'3 "ﬁ .é...—l
d4Y
which for the strong selif-similer blast wave y = 0), reducss to
?\ :(."+ f) Iv.e. )

Finaliy, tne compatability conditicn which fust be satisfizd av the center of

symmeiry by Che correct solution 1s given by Eg. (TI.112), namely

fo, =0 (IV.4.0)

FAplylng Lhe councept of Lhe Juasl similes technigue on The goJ/erning eQuati.ng,

They "23ece tw The foliowing uraliery Jirtereniial equarionsg, glven giwelously

gn Ty e
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by Eqs. (IiI.23) - (IIX.25), when all ¢ 's vanish

(F-r) 8k s h(d il ARA =0

(F.x).e%-».i. d9 . Afe =0

d dax
and
(F-x)4d + ¥9(dL 4 i £)4+29G =0
where
Am L
.
™ i%i -0 5
and '
C o EP+4 _ 1
¥h+Y
with

dfi co=9 y[1_ ¢t- D )g
Q.gdﬂ (m)[ (1-5)-«*9/.;,]

Equations (IV.4.9) thus yield

J

(IV.4.9)

FI I ERRE,
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df = g'l‘-ﬁg-f+7t96-ﬁhf(ﬂ%)3 | :

dx h(F.2) - %9

A o - h (Iv.4.10)
o (ﬁ'&')(ﬁ* e 2A)

and

g%, =~h((f—¥):4£ * ;\;B]

As discussed previously in Chapter III, there are two different singularitiss,
in addition to the singularity at the center of explosion, which can be diract-
ly obsarved from Eqs. (IV.4.10) These singularities are located at f « & and
h¢f- x)* = ¥9 . In terms of the reduced variables, F and 2 , these cin-
gularities are given by

F- 1.0 ‘ and Z = (1-F)‘ (IV.4.11)

111) Solution

Equations (IV.4.10) can be integrated numerically using Runge-Kutta fourth order
wthod, subject to the boundary conditiocns given by Eqs. (IV.4.2). An iterative
procedurs must be used to Find the correct value of A which satisfies Eq.
(IvV.4.8). Since we cannct proceed wi.h the numerical integration till the cen-
ter of symmetry, due to the existence of the singularity at the center, the so-
lution is based on matching the numerica! solution. from X = 1 to X = x ,
wlth an asymptotic formula fur the non-dimensional velnricy, £ . However, it
can be acsumed that the velocity aistribution near the center of symmetry is
linear, provided that the value of X s very small, The value of X .must be

Taund & priorl for each geometrical symmstry.

-

. ..
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The Y domain in which we are interested ( 0 € Y < 5CJ] 1s divided into
small steps, each step (& Y ) equals 0.005. Tha choice of the values of
A% and &Y 1is based on the grid-independent solution.

If the solution at ¥ =Y, is known, then the solution at Y = Y. 4
( Y44 = Y + 44 ) 1s obtained as follows:

8) At a certain value of Y » Y, 4 , the boundary conditions £ . h,
and 4, (at X = 1) can be calculated from Eqs. (IV.4.2).

b) An assumed valus of the dacay coafficient A;.q is then used to inte-
grate Eqs. (IV.4.10) numarically. The integration is stoppad at X = & ,

c) Applying the linmar ralation betwesn the non-dimensional velocity £
and X from & « X tc X « 0, the velocity at the center of symmetry can be

obtained by extrspolation,

d} If the absolute value for the velocity at the center of symmetry, which
should identically be squal to zero, is greater than the required accuracy,
one may repeat the above procedure by changing the assumed 2.'.“ by A until

the required accuracy 1s obtained.

@) With the correct valua of Aj,q determined, the flow field parameters
will be obtained, end then the values of the mass integral, J , and the aener-

gy integral, U’. , can be calculated using Rombarg procedure.
oowd

f) The whole procedure is repeated for other values of Y until the solu-

tion is obtsined for the whols range of Y .

It should be noted that forcing the sclution to proceed to toco small a value
of Z will throw the solution into the singularity X = 0. Also, during the
trials of ubtaining the correct X , caution shculd be exercised lest the solu-

tion throw into one or the other of the singularities given by Eq. (IV.4.11).

IV, Results and Conclusions

In arder to obtain a numerical soluticn, it has besn assumed that the detana-

ting medium is a stoichicmetric methans-air inixture. Therefors, the value of

-

.
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4 for such & mixture is 20.0231 and ¥ = 1.3 (Kamel st al., 1878). For the
spacific case prassnted here, Eq. (IV.4.3) yields qCU = 0,033786,

Figures IV.4.1a, b and ¢ show the pressure profiles for planar, cylindrical
and spharical geometries with ¥ = 1.3. At any spacified value of 4 , the
preasure immediately behind the wave front is a maximum and fallé off to a
nearly constant valus near the center of symmetry. The fall-off in pressurs
is greatest for sphbrical waves, with its greatest value of the decay coeffi-
clent C\ » 8nd least for the planar waves. As in the case of adiabatic point
explosions (Korobeinikov et al., 1869), ths pressure ratio at the centsr de-
crsases first to a minimum before aacending.to its Chapman-Jouguet detonation
value,

Figures IV.4.2s, b and c and IV.4,3a, b and c show the density and temperaturs
profiles, respectivesly. Thase sets of curves are bound to the right by the
self-similar solution for the adiabatic point explosion., It is evidant that
the density at the center is always zero, corresponding to infinite tempera-

'turn. 8 characteristic property of the solution obtained for an inviscid, non-

conducting and non-radiating gas. As shown in Figs. IV.4.2, nearly all of the
mass of the gas engulfed by the blast is concentrated close to the wave front
for the self-similar case and is then distributed gradually in the flow field
for Y > 0, until the Chapman-Jougust state whare the distribution of the

mass is more uniform. It is seen also that the fall-off in density is greatest
for spherical waves, the same tendency in pressurs profiles, and least for

planar waves.

The particle velocites.'es shown in Figa. IV.4.4a, b and ¢, have a maximum va-
lue Immediately behind the wava front and decrease to zerc at the center of
symmetry., At any given % and Y , the spshrical flow velocity is the lowest.
With larger valuss of A , and for planar waves the velocity increases.

The {ntegral curvee for different values of Y ranging from 4 = 0 to Y = 0.033,
are projacted on the F - 2 phass plane, for i s 0, 1 and 2 in Figs. IV.4,5a,
b and ¢, respectively. Integral curves for Y = 0 represent the solution at

the initial instance, while the initiation energy, E&; , is still the predomi-
nant parameter governing the flow fisld, They are, of courae, identical to

.
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those for the self-similar point explosions in an inerf gas (Sedov, 1857). As
the front decays and, concomitantly, the role of chemical energy becomes more
prominent, the value of Y increases until it, finally, asymptotically reaches
the steady Chapman-Jouguet value characterizing the explosion. Each integral
curve starts from a particular point on the Hugoniot curve, specified by the
conditions corresponding to X = 4 . It can be directly observed from Figs.
IV.4.5 that the solutions are free from singularities since the locii of the
singularity 2 =.—(1_;:')2 and the singularity F = 1 do not intersect with any
of the integral curves. Since a singularity does exist at the C-J condition,
the corresponding integral curve is not included. One, however, may approach
that condition sufficiently to get a good indication of the quantitative and

qualltative nature of the solution.

The mass integral, J, , and the snergy integral, J} , are depicted in Figs.
IV.4.6 and IV.4.7, respectively, for different values of j . These curvaes
start from their respective values for the inert self-similar point explosions
at Y = 0 snd end at ¥ = 0,033 which nearly equals ﬂcd- . The mass integral
is used to check the accuracy of the solution and its exact value is given by
Eq. IV.4.6 that some error is obtained in the mass integral which reflects in-
accuracy in the density distribution within ghe flow field. This serror, haow-
aver, is expected dus to the quasi-simillar aﬁproximation which causss the solu-
tion to be accurate near the self-similar range and just behind the wave front.
The ensrgy integral may be used to iterate on the decay coefficient, which is
another method to obtain the correct A , but it is used here to obtain the

non-dimensicnal wave radivs, § , using Eq. IV.4.5.

Tha decay coevficlents, )., are shown as functions of 4 in Fig. IV.4.8. An
iterative p;ooedure was performed to obtain the correct value of A which sa-
tisfies the condition of zero particle veloeity at the center of symmetry. Any
assumed value of A less or greater than the correct one results in a numerical
1istability. This occurs due to the two different singular points in the flow
fisid, given by Eg. (IV.4.11), which would pull the integral curve to either of
them. It was observed that the numerical instability, due to these singulari-
ties, may occur in two diffaerent forms. The dependent variables ﬁ and h may

take negative values or may take values greater than the preceeding ones during
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the numerical integration of the governing equations. Therefore, it is recom-
mended to use the conditional "IF" statement insida the integration procedure
in the computer program to avoid the singular points and save computafional
time during seeking the correct A « It was also found that a deviation in
the order of 1 x 10”4 in the correct value of ) ;nay lgad to the domain of
singularities. Because of the singularity F = 1.0, the numerical integration
of the governing equations was stopped at x = 6.02 for planar and cylindrical
waves and at % = 0.04 for spherical waves. A linear extrapolation was then
applied to £ in order to obtain £ (0, Y ). The solution was considered cor-
rect when [p(o,g)l 41 x 10-4. In order to achieve this accuracy, the improve-
ment in the value of ‘A was in the order of 1 x 10-4 for planar waves, 1 x 10.S

for cylindrical waves and 1 x 10.B for spherical ones.

The non-dimensional radius, }' , is plotted as a function of the parameter Y
in Fig. IV.4.9, It appears from this figure that, for all practical purposes,
the Chapman-Jouguet state can be considered as well established by the time

} = 1. This means that the Chapman-Jouguet condition is practically achieved
when Yn = V¥g ., This radius, according to our definition of v; , is deter-
mined by the value of the initiation energy, £; , rather than by the exother-
mic energy of the detonating medium, q.. In view of the fact that the amount
of overdrivennsss of the detonation wave is primarily affected by the initia-
tion energy, this result is.not altogether surprising.

The results which are obtained here for the inviscid solution can be compared
with those obtained by Kamel et al. (1979). The same problem is solved by two
different methods. Kamel used the phase space method of solution, while in
this work the quasi-similar technique of Oshima is used. The results in the
two cases are qualitatively similar. The quasi-similer technique fails to ob-
tain the values of the gasdynamic parameters at the Chapman-Jouguet state which

represents a singular point in the solution domain. Therefore, the solution is

stopped at Y4 = 0.033 which is approaching the ﬂca. value of 0.033786. However,

the quasi-similar technique is easier to perform and it is faster to yield re-

sults 1n a general gualitative manner.

Figures from IV,4.10a to IV.4.17 show the comparison between the results of the

E
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two methods for the pressure profiles, the density profiles, the temperature
profiles, the velocity profiles, the integral curves in the F - Z phase
plane, the enargy integral, {, . the decay coefficient, A , and the non-
dimensional radius, } , respectively, for different values of Y . From
these figures, the two methods of solution appear close enough to warrant the

use of the quasi-similar approximation.
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Figure Captions

Fig. IV.4.1 (a), (b) & (c)
Non-dimensional pressure profiles for planar, cylindrical and

spherical waves, respectively, at different values of Y with
9 =20.0231 and ¥ = 1.3.

Fig. IV.4.2 (a), (b) & (c)
Non-dimensional density profiles for planar, cylindrical and
spherical waves, respectively, at different values of Y with
4 =20.0231 and ¥ = 1.3.

Fig. IV.4.3 (a), (b) & (c)
Non-dimensional temperature profiles for planar, cylindrical
and spherical waves, respectively, at different values of Y4
with G = 20.0231 and ¥ = 1.3.

Fig. Iv.4.4 (a), (b) % (c)
Non-dimensional velocity profiles for planar, cylindrical and
spherical waves, respectively, at different values of Y with
q =20.0231 and ¥ = 1.3.

Fig. IV.4.5 (a), (b) & (c)

Integral curves in the F-Z phase plane for planar, cylindrical
and spherical waves, respectively, at different values of Y

with '5; = 26.0231 and % = 1.3.

Fig. IV.4.6 Mess integral J,; as a function of Y with §.= 20.0231 and
¥as1.3 while § =0, 1 and 2.
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IV.4.,7 Energy integral U; as a function of Y with q.= 20.0231 and
8 = 1.3 while § =0, 1 and 2.
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Iv.4.8 Decay coefficient A as a function of Y with 4 = 20.0231 and
¥ = 1.3 while § =0, 1 and 2.

Iv.4.89 Non-dimensional radius } as a function of Y with "1 = 20.0231
and & = 1.3 while J =0, 1 and 2.

IV.4.10 (a), (b) & (c)
Comparison between the Quasi-Similar and Phase-Space methods of

solution for the non-dimensional pressure profiles with
q = 20.0231 and ¥ = 1.3 while § = 0, 1 and 2, respectively.

Iv.4.11 (a), (b) & (c)
Comparison between the Quasi-Similar and Phase-Space methods of
solution for the non-dimensional density profiles with
g = 20,0231 and ¥ = 1.3 while 4 =0, 1and 2, respectively,

Iv.4.12 (a), (b} & (c)
Comparison bsetween the Quasi-Similar and Phase-Space methods of
solution for the non-dimensional temperature profiles with
9 =20.0231 and ¥ = 1.3 while 4 =0, 1 and 2, respectively.

Iv.4.13 (a), (b) & (&)
Comparison between the Quasi-Similar and Phase-Space methods of
solution for the non-dimensiocnal velocity profiles with
g =-20.0231 and ¥ = 1.3 while 4 = 0, 1 and 2, respectively.
1v.4.14 (a), (b) & (c)
Comparison between Quasi-Similar and Phase Space methods of so-
lution for the integral curves in F-Z phase plane with
9 -20.0231 and ¥ = 1.3 while § = 0, 1 and 2, respectively.

Iv.4.15 Comparison between Quasi-Similar and Phase Space methods of so-
lution for the energy integral Z]:, with i = 20,0231 and
¥ = 1.3 while § =0, 1 and 2.
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Fig. IV.4.16 Comparison between Quasi-Similar and Phase Space methods of so-
lution for the decay coefficient 9 with 'ﬂ., = 20.0231 and
¥ = 1.3while 4 = 0, 1 and 2.

m‘m“
DR - Tt '.r-'-'-'-

+ Fig. IV.4.17 Comparison between Quasi-Similar and Phase Space methods of so-
lution for the ron-dimensional radius } with 'q_ = 20.0231 and

Y
[

¥ = 1.3 while 4 =0, 1 and 2.
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Iv.s, ANALYSIS OF REACTIVE BLAST WAVES PROPAGATING THRQUGH
GASEQUS MIXTURES WITH A SPATIALLY VARYING HEAT OF
DETONATION*

1) Introduction

In the actual situation, as occurring during an accidental spill of fuel gases
into open air, the initial conditions are no longer uniform and may be very com-
plex. In particular, the concentration of the fuel gases may vary with the di-
stance from the fuel source. This non-uniformity will affect the propagation of

any resulting detonation wave considerably and is essential in studying real ex-
plosions, Geiger (1979).

In this section, the propagation of reactive blast waves through a medium of
spatially non-uniform fuel concentration is analyzed. For simplicity, the fusl
gas concentration distribution is assumed to be symmetrical with respect to the
center of explosion. With this assumption, blast wave propagation is a spatial-
ly one-dimensional problem. In addition, the change in concentration is expres-
sed by the change in energy relesased at %he wave front. The chemical heat re-
lease ? is determined by the chemical composition and the thermodynamic states
of the reactants and products. In this analysis 9% is assumed to cepend only on
the initial chemical composition which varies with distance from the explosion
center. While the transient diffusion problem may be used to determine the con-
centration profile, the distribution q.( v ), with v being the gistance from
the fuel source is given a priori., For simplicity, changes in concentration due
to transient diffusion are neglected since the diffusional velocities are much

smaller than the shock wave velocity.

The effect of combustion heat release appears only in the boundary conditions at
the wave front and varies as the wave propagates, so that the boundary condi-
tions include the unknown function which controls the propagation of the wave.
The formulation of the problem is applicable for the three geometrical symme-
tries: spherical, cylindrical and planar, while the results are obtained in the
case of spherical waves only. The detonating medium is assumed to behave as an

inviseld perfect gas with a mean specific heat ratio ¥

* This application is based on Ohyagi et al. (1381],
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ii) Problem Formulation

At a time T =0 and a point ¥ =0 a finite amount of energy £; is liberated

by some energy source to form a non-steady, symmetrically expanding shock wave,
i.e. a blast wave as is shown in Fig. IV.5.1. If the medium is an inert gas,
the blast wave decays to sound wave. In exothermic reactive media, if the
energy £; exceeds a critical level, the waves decay to the Chapman-Jouguet

wave whose propagation velocity is determined by the chemical energy of the me-

dium,

In this problem, the concentration of the fuel gas changes with the distance
from the center of explosion. As noted previously, the distribution utilized
here is that of chemlcal energy instsad of that of the concentration. For sim-
plicity, the distribugion is assumed to be symmetric with respect to the center
so that a symmetrical nature of the propagation is assumed. The chemical ener-

gy release at the wave front is given as a function of N

9 =9Mm) (IV.5.1)

Any explosive gas mixture exhibits detonability limits beyond which a detona-
tion can not be established. Here, the chemical reaction is always assumed to
be complete at the wave front, and the complex physico-chemical phenomena oc-
curring in the reaction zone is neglected. If the detonatility limits should
be taken into account, the value of the limiting concentration or the limiting

chemical energy should be given a priori,

In addition to these fundamental assumptions, one may assume that the change
in molecular weights of the fuels and the oxidizers do not affect the density
and the pressure of the medium ahead of the front.

The governing equations, Eqs. (II.20), (II.22) and (II.24), for a sourceless,
tnwviscid and thermally and calorically perfect with constant specific heats

nedium, are reduced to

[ "
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Y ....'l..,.(/‘-x) sh . h(=f +J’.£)=o

AY 2L Lihm E R . 34 =o (1V.5.2)

where A is the decay coefficient defined in Eg. (II.14), which may be rewritten

as

A = dfa‘j =2 ..4_[1_‘“1 (IV.5.3)
d?nf'n J?n"a

The boundary conditions of the problem are that of the reactive medium with in-
stantaneous heat release at the wave front of strong detonation, which are given
by Egs. {I1I.83), (II.54) and (II.85). These eqiations may be rewritten as fol-

lows:

f, = Fd,4) = d=d= K
¥+

h = hit,Y) = L2 (1V.5.4)
n ’ E’q—‘j-K

9(1;9) = %%—:—;%&

3,

whers

?T
]

, e
ﬁ -
[12-9)" - 2(5-1)49] (1V.5.5)

with § being the non-divensional chemical heat release at the wave front, de-
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fined by Eq. (II.53) which is, in this cass,

q’ = q‘<m) (Iv.5.8)

-

The heat release at the wave front, Q- » depends on the wave position, Y .,
so that it is a function of H .

A condition to be satisfied at the center of symmetry is that the particle ve-
locity must equal to zero for all times, which is given by Eq. (II.112) as

F(o,4) =0 (IV.5.7)

The problem now is to solve Egs. (IV.5.2) with the boundary conditions, Egs.
(IV.5.4), as well as the compatibility squation, Eq. (IV.5.7), to find a func-
tional form of 'A(Y) for a given function of G (v3) . For this purpose

the relation between I; and Y must be given.

Integration of E€q. (IV.5.3) yields

Y
? = .E:_ = exp <H,f 7{-%-) (Iv.5.8)

where 30 and Y5 are arbitrary constants which express the initial condition
of the wave Mach number and position, respectively. When the value of ‘d, is
very small, the self-similarity of the flow holds at this initial stage. As
defined prgviously in Eq. (II.72), the initial position r; is proportional

to E, L/¢iet) By using Eq. (IV.5.3), q_ may be expressed in terms of Y .,

Therefore, the boundary conditions, through q,(r;,) , a@s well as the basic
conditions include the urknown function A(Y) .

Here, the function Q(Y;,) is assumed to be differsntiable. Therefore,
the application of the quasi-similar concept yields the following ordinary
differential equations fur the governing equations, as given by Egs. (III1.23)-

T
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(II1.25) where, for a sourceless flow field, all gﬁ 's vanish.

(F-2)db s h(dL4if)+AAh =0 T

JF + 4 dd =

(F- 2 33__+x9( +if)+A9C=0 |

where

and

C = J@&+4 _4
5F +Y

while

P = y jSH ...(-H ) (JK i)

and

(Iv.5.9)

(IV.5.10)

(IV.5.11)

(IV.5.12)

(IV.5.13)
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_A_E- = ..4— - - 2._ 4 7] 1 Alﬂ q.
a9 = K [(!'l 0 --1) 9 ( +?t~__ié (nm)] (Iv.5.14)

13

As an example, a simple exponential form of the function CL (v;) is adapted.
In the non-dimensional form, it is

) = q; exP(-P ¥) (Iv.5.15)

o'Sls‘i .

Yy =G exp(-p

-—

where q; and /3 are non-dimensicnal parameters.

If B is positive, the fuel concentration becomes smaller with the distance from
the center and the chemical energy released at the wave front decreases exponen-

tially as the wave propagates.

In the case of Chapman-Jouguet detonation, K equals to zero, see Eg. (IV.5.5),
thus

- (a-4y
29 (53 1)

To obtain a functional form for the decay coefficient in the case of C-J] wave,
one may differentiate the above equation with respect to :} and utilize the de-
finition of ) , given by Eg. (IV.5.3), to get

. =
9\J=(c"n‘d) = RPN (IV.5.16)

€I dbt'cs  Fle-9+@=0F]

iii) Solution

The set of simultaneocus ordinary differential equations, Egs. (IV.5.,89) is solved
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numerically. Since A(Y) is not known initially, the value of A for each Y
is first assumed and integrations are started from the wave front, X = 1,
where the boundary conditions are given by Egs. (IV.5.4) to the center of ex-
plosion, X = 0, where tpe particle velocity is equal to zero. If this condi-
tion is not satisfied for the assumed value of A , this value is corrected
and the procedure is repeated until Eg. (IV.5.7) is satisfied to the required

accuracy.

A difficulty, however, arises because the integrated term of A(Y) appears in
the boundary conditions. The steps of the solution in this case are as fol-

lows:
a) To obtain A(Y) , Y is assumed firstly to be equal to ‘."o .

5) From Eg. (Iv.5.8), } = 1 and CL is calculated from Eq. (IV.5.8) so that
the decay coefficient A(4,) is obtained by iteralion.

c) Next, Y is increased by small amount, &Y , and } is calculated by nu-

merical integration of Eq. (IV.5.8) with the trapezoidal rule.

d} Applying the same procedure as describu:! ;1. viously leads to the solu-
tion A (Y, +8Y) -

d) The further solution will be found by 1vpetition of this procedure.

It should be noted here that the error in this prucedure can be reduced if the

increment a4 is small.

iv] Results and Conclusions

The results obtained here are for the case of cpherical wave, 3 = 2. The va-

lues of the other parameters used ere:

—

a*o = 20, p = 0.001, 0.05, 0.1, 0.15, 0.2 and 0.5, Y

= 0.0001 and & = 1.4,

So, in these calculations, the medium has sufriciunt chemical energy to support
a Jetonation near the explosion center, with i, ~tergy released decreasing ex-

ponentially with distance.

It should be noted hure that if B is egual Lo ccru, the wave will decay to the

et
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Chapman- Jouguet wave with SCJ = 0,026, calculated by using Eq. (II.94), and
the problem is reduced to that discussed briefly in section (IV.4).

The step size for the Ru'nge~Kutta integration for X - direction, AX , is
chosen to be 0.01. For the Y - direction, the step size AY 1s 0.000i.

Figure IV.5.2 shows the decay coefficient A(4) for each B . When Y is
equal to zero, the self-similar solution is fulfilled so that A is equal to
j'.y 1 =3, As Y increases, A decreases generally which means that the
wave approaches the steady wave. For small values of B , as 0.001, the heat
liberated at the wave front is almost constant and the wave behaves as a re-
active blast wave in the uniform combustible mixture for the regime where the
solution can be found. It seems to decay to the C-J wave | ‘dCJ = 0.026) but
the solution can not be found near C-J state because of the singularity at
the wave front in the C-J wave. In the C-J wave, the gradients of F . h
and 9 in the Y - direction become infinity as indicated previously in sue-
tion (IV.4). As B increases, |%%-\ decreases; and a transition from the re-
active blast wave to the non-reactive one occurs with increasing Y . For
B = 0.05, X has a minimal value of 1.09 at the value of Y& 0.08, It
appears that the wave, decaying as a reactive blast wave, loses its energy as
it propagates and in turn decays more rapidly as a non-reactive blast wave.
But for this case, the solution can not be found for Y > 0.07 because of the
limit of the numerical precision. For B = 0.1, 0.15, 0.2 and 0.5, the com-

plete solutions show the transition from reactive blasts to non-reactive ones.

For £ = 0.5, the solution is almost identical to that for 'é.o 20 (or B w=oe),

i.e., the non-reactive blast wave except for very small values of Y . The

values of the decay coefficient for 6 » 1, when ¥ » 0.35, or M ¢ 1.7, are

nearly the same because the chemical energy 'q, , there, is almost equal to

zero. The dashed curve shown in this figure represents the Chapman-Jouguet de-

cay coefficient, ?‘CJ , for B = 0.1, as a function of Y which is given by
tg. {Iv.5.16). The C-J decay coefficient for B = 0.1 varies with Y because
the chemical energy q_ changes with } , and it can be called as the local C-J

decay coefficient.

Figure IV,5.3 shows that the shock "ach number, M , decreases with an increase

1n th- nao-gimensicnal radius, } . The curves for all B 's are calculated

-
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with the same initial condition, i.e., for } =1, M = 100. For [ = 0.001,
the Mach number ™M seems to decay to the Chapman-Jouguet value, PﬂCJ = 6.202,
corresponding to Eic3-= 0.026. In reality, it decays to the sound wave as

the wave propagates infinitely apart from the center. As B increases, ™M
seems to decrease to unity in the far field. From Fig. IV,5.3, it can be seen
that for J > 25, " is less than 1.7 for > 0.1. Therefore, in the re-
gime } > 25, although Zi is almost zero for those B 's, M for larger B

is greater than that for smaller @ 's. It can be saild that this is the effect
of history which the wave has experienced. The dashed lines in Fig. IY.5.3 in-
dicate the Chapman-Jouguet Mach number obtained by K = 0. The C-J Mach number
for a certain B varies with T because Zi is changing anc it can be considered
as the local C-J Mach number. It is evident that the Mach numbers for all P 's

decay to their own local C-J values.

Figures IV.5.4 through IV.5.6 show the variations of the peak values, just be-
hind the wave front, of the non-dimensional density, velocity and pressure with
respect to } . They change from the values of the strong blast wave limifs
(i.e. h, = 6.0, £, =0.8333 and 9, = 0.8333 for & = 1.4) to the values of
the C-J wave (i.e. h,=1.883, f, = 0.4508 and 9, = 0.4244 for ¥ = 1.4 and
q. = 20) for the reactive blast wave in the uniform medium, while they ap-
proach the values of sound waves (i.e. h, = 1.0, fh =0 and 9p = %J for the
wave in the non-uniform medium. From Fig. IV.5.4, it can be said that in the
early stage the peak density at the wave front decays more rapidly for small g
than for large  with respect to the distance from the center. In the early
stage, M is determined by the initiation energy rather than the chemical ener-
gy. For the same M , the peak values for small chemical energy is larger
than for large ¢ as is calculated by the Hugoniot relation. In the later
stage of propagation, M\ approaches to the local C-J value and it is determined
by the chemical energy. Therefore, the peak density for large B has a tenden-
Cy to decay more rapidly than that for small B
forures IV.5.7a-c show the typical density profiles normalized with respect to
the pesh values at the wave front for P —w oo (Or q.o =0), B = 0.2 and 0.001,
Tne non-gimensional aenvity near the center increases as 4 —» 1 for B w @ and

P = ..0 (nere, the profiles of B = 0.2 for Yy > 0.25 are omitted because
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they are almost the same as those for B—e o ). For B = 0,001, the non-
dimensional density increases very little as Y —» ‘ij(when Y = 0.022,
':HE‘IC.;I = 0,846). In these calculations of the point blast wave, the density
near the center remains zero, corresponding to the fact that the velocity
gradient :’},ﬁ‘ does not vanish. If it 1s possible to extend the solution for

larger Y , the density may increase more near the center.

Figures IV.5.8a-c show the particle velocity profiles. The core in which
the veiocity vanishes is not accurate in these figures. This 1s a consequence

of the quasi-similarity aspproximation since it 1s expected that for Q,O =0
and Y > 0.6 then f(¢x) has a negative region near ths center.

Figures IV.5.9a-c show tha pressure profiles for B w0 , B = 0,2 and
B = 0.001, respectively, where the piofiles exhibit the same general trend

as in previous cases.

In this model using the quasi-similar approximation, there have to be some in-
accuracies in the gssdynamic profiles. However, the decay coetficient obtai-
ned seems to be reasonable. In additiq\n. thie method permits the use of any
model for the heat release function ‘7,(";\) and it makes it very convenient

to find the decay coeivficient for the wave front.

In this example, q_ is taken to decresase exponentially with distance from the
center, the nature of wave propagation is determined by the ratio of the cha-
racteristic radius of the initiation energy, f; ., to that of the decreasing
initial chemical erergy, B , and it is revealed that for small  , such as
.00 and 2.C5, the wave front behaves as a detonation wave and for large va-

lues of B , such as 0.5, it decays as a non-reactive blast wave.

Pt
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Figure CaEtions ’

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Iv.5.1 Configuration of a spherical blast wave.

Iv.5.2 The dscay coefficient A as a function of Y for different values
of p with ¥ = 1.4 and § = 20 while { = 2,

Iv.5.3 The shaock Mach number M as a function of the non-dimensional
shock radius § for different values of g with ¥ = 1.4 and
q - 20 while § = 2.

IV.5.4 The density ratio across the wave front as a function of the non-
dimensional shock radius ¥ for different values of p with
§ = 1.4and G = 20 while i-2.

Iv.5.5 Tne velocity' ratio across the wave front as & function of the non-
dimensional shock radius § for different values of B with
¥ = l.4and § =20 while § = 2.
o

1V.5.6 The non-dimensional pressure at the wave front Qn as a function
-y

of the non-dimensional shock radius § for different values of B
with § = 1.4 and §. = 20 while § = 2.
(]

Iv.5.7 (a), (b} & (c)
The density profilas at different values of Y for B = oo , 0.2

and 0.001, respectively, with ¥ = 1.4 ana § = 20 while § = 2.
[

. lvaule (a), (b & fc)

The particle velocity nrofiles at different values of 4 for

B - o, 0.2 and 0.001, respectively, with ¥« 1.4 and ?1_. = 20

while 4 - 4.

ol wsuad, () 8 (e)

f~e yrussure prcfiles at differenti values of 4 for B = & ,
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0,2 and 0.001, respectively, with ¥
i =2

1.4 and Q; = 20 while

\d

1y

IR

vy




272

.........

s
(|
N
. |
—
. |
1
.
v—d
A
el
-
.
e~
-
o
(

.....
................

T1°S°AI -btg

u
( )b sjuejoeay

Juoxj SaeM:
u I93uUa) uorTsoydxyg




273

Iv.5.2

Fig.

'y



e A,
! 274 L
20.0 o
i=2 &0=2o ¥=1.4
M
15.0 N .
-
o
10.0}— .. 9
A =0.001
/0005 ‘ ‘
-9
() cJ
V\-—_—--— NS G G OGNS AU GER SR IS CNEE CUD TP SRR SRR OGNS WD e e GRS SED R e
Qé:"~“~
~
| S N ~ CJ FOR 0. .
5.0 >7 - Y 0.05 Ry
=~ 3
N _ ,
16-0.1 '
0.2/ > | ‘
[-_-J
. e
/\\\\
CJ FCR 0.1 R
0.27 ACOUSTICm s oo ———s
1 l i I 4 ®
0 10.0 20.0 30.0

C4h

Fig. IV.5.3




275

..........

........

»°G"AI “bra

e SR s CI CEID . S G S, GEED GRS CMED WED CEw = ee=m

0°¢

P

PPPPPP




276

e
1 *
G"G-AI “BTd
0y ..M
ay -
0°0f 0-0Z 0°01 0
=¥ w . —
v I "h 0z 0N°W T = -H
fia
—s-o
M _u
ﬂnp =
100°0 z..\\\wa
SG°0 —— €80
0 “\
z-0
oo ~gf 0° [
I SORTUCAWN - NN it sian B




271

9°S°Al

.
~
-_—
L ‘

.
-
A
——
A
-

“br4

o

/1

<

—S°0

:

......




w\

278

0.5

Fig. 1IV.5.7a

e 2 8

- @




w
-

279

“
_— |
1.0 N
j = 2, ¥F= 1.4
L. = 20
q, N
o d
h
h |
' o
0.5
I Y = 0.250
0.150 P
! 0.080 ~—
0.002
[ |

0 0.5 1.0

Fig. IV.5.7b o




S ) EAORAANS ¥
- . A

.'\v‘rr.v'vh

1.0

=g} 4

0.5

280

Y=0.022
0.018
0.012
0.002

0.5

Fig. IV.5.7c

1.0




oL R

281

1.0

£/t

i Y=0.001

0.300 _\

Fig. IV.5.8a

1&0

(SR

[ S

* v»u‘

-9

» Feaw

-9




YT,

""'?rn"""

Y. .:

———

) L rm' "",’T“"'f-
, i d s
. . LI . - K

1.0

) n

0.5

282

Fig. IV.5.8b

]

-

.
]

-9




.th
*

- . TESY s — o w
B T T TR N T T T
.

283

1.0

rhitn

0.5

Fig. IV.5.8c

!




P’ B PalFid

L IEF R K

i
!
!

N PR N

284

1.0

0.820

oR T

0.600

0.300

0.5

0.001

G RS
. WY W e T

Lo

Fig. IV.5.9%a

1.0

B ¥

x
i




285

1.0

q9/q

i=2, ¥=1.4
§0=20

Y=0.250
0.150
0.080 —
0.002

N

}-'

2 s




-

J
s
¢

»'Ww»wrvvw“\-wﬂ e v
e L5 Mo

¥

(i d

2 33
o A
5 .

T‘, mard r..‘v,'t. At
. s e . .o °

1.0

ey tel

286

= 2,
= 20

¥

K
[ - B W A
t i

¥=1.4

y=0.022
0.018
0.012
0.002

Fig.

0.5

IV.5.9c

1.0

=1y

[
[ ]

., 8




- 287 -

Iv.6 BLAST WAVES IN A DETONATING MEDIUM WITH TRANSPORT
PROPERTIES TAKEN INTO ACCOUNT*

i) Introduction

It 1s evident from previous applications, for both reactive and non-reactive
blast waves, that the solution fails near the center of symmetry since the

temperature goes to infinity, while the density of the gas tends to zero. In
order to improve the solution near the center, one has to taka the effects of

viscosity, heat conduction and radiation into account.

In this section, the ncn-self-similar problem of a point explosion in a deto-

nating gas with viscosity, thermal conduction and radiation effects is analy-

~zad. Radiation has besn included by assuming a diffusion radiation mode for

an optically thick grey gas which, as a consequence. leads to radiation tsrms
that are mathematically similar to those of thermal conduction. The trans-
port coefficients are assumed to be proportional tc appropriate powsrs of tem-
pgrature., A boundary layer-like ragion is assumed to exist nesr the blast
aorigin where all the transport effects are concentrated, thus permitting the
rast of the flow field to be treatea in thc uvsual inviscid manner. After tha
inviscid solution has been obtained, series expansions of the gasdynamic para-
meters are then applied'to the inner region equations which, in turn, reduce
to algebraic relations. The structure of the non-self-similar flow fields is
then fully determined by matching the approximate aolution for the inner re-
gion with that for the inviscid outer region. The three gsometrical symme-
*ries of blast waves are considered and the detonating medium will be treated

as a perfect gas with a mean specific heat ratio, ¥ .

-+) Problem Formulation

The three conservation equations of mass, momentum and energy, taking into ac-
count possible sources of mass, momentum or energy that may aftect the flow
field, are given by Egs. (II,1} - (II.3).

For the case considered here, the rate of mass supplied per unit mass of the

mixture is zero. Thus

* Thrs application is hasec nn Abdel-Raouf (1982).

-
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A =0 (IV.6.1)

o
DA ]

when taking the effect of thermal radiation, by assuming a diffusion radiation

R
a2~ *

mode for an optically thick grey gas, thermal conduction and viscous forces
into account, the momentum and energy source terms, as given by Kamel et al.
(1977 a) take the form:

-4 ~*L 4, u ) S Lo
‘/IF'T“.FA[-;”. *'F('m_r-?)-'*f? ~r ("::-P-—T%) (1v.6.2)
and __
= 4 St 2yt 4d-1 uy .
2 'p‘{‘?/‘[“w (24" Ld=1) (L] N

(IV.6.3)




T

- 289 -

where T is the absolute temperature and & is the Stefan-Boltzmann constant,
while & , K and cl/are the coefficients of viscosity, thermal conduction and
absorption, respectively. These coefficients, being thermocdynamic properties,
are functions of temperature and pressure. However, the pressure 1s very near-
ly constant in the inner region near the center of symmetry where the iransport
properties predominate. Therefore, these coefficients may be considered as
functions of temperat.ure only and could be assumed to vary with the local tem-

perature, as given by Kamel et al.(1973a), in the following manner:

o o . ’ »
M= p, _1'%) ; K= K,(%) and a-a.(-'—'f) (IV.6.4)

where = and p are constants, and subscript o refers to some known state.

One may then define the following non-dimensional parameters of the transport

properties
/
C Q
Re g 5% fa , Pre e Cp ang NoO 5—‘-,—.5-2‘ (IV.56.5)
/Llo K 46 T
© ]
wieie Reé is the Roynolds number; pPr , the Prandtl nueber; No , the radia-

ticn-conduction parameter; CP the gas specific heat at constant pressure and

ro 15 the characteristic length of the explosion.

The basic equations of mass, momentum and energy, in non-dimensional form, Egs.
(I1.20), (IX.22) and (II.83), with the definitions of E€gs. (II.21), (II1.23)
and (II.84), under the assumption of uniform ambient atmosphere, are then re-

duced to

X
—2'511-:" +(‘(;‘tk) ::—h— +::’%+J.£. =0

A . AY F - : 1
g st 3y +“F’” = Y :3 = & 2 (IV.5.6)
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and
Ad =9 | (£F-x) =9 = '
with !

= 4 7 , ,.(x~1)h L
5, .F_../JFT';Z ng B (" 3 Fw"‘> (1V.6.7)

Substitution from Eqs. {IV.6.2) - (IV.6.5) into Eg. (IV.6.7; yields

- --)] {1V.5.8)

and

e =) g Fof E Fmf j(zod) 2
G FV[RE) - 3 480 Y]

<9_)""[ 2T th L 29 2@et)

i
e h
h™3%xd TR L RE x

j' ‘:" 5‘1 j 'ij 2' Y g ﬁA \1 L]
R SR A2 [ X} 2 r 20 .d_.._. >3
Y Zx T i + (L) z(“ax"*f, (,}x)]

+ £ ,_.(if. f’i‘-«)B[:,?. Ef,’.‘. - o 2 (4-B) ~h =14
9 h —x? <A A l, ~% wx

_4 9 <~k 4 ~9 )92 ,
Pl o S (%= 2) h’( i*%ﬂ(:;;;{)J {IV.5.9)

| I




~, =

R & LR

. - 281 -
i where
o 20t
‘ € = -%- ¥ M ]
1 Re ¥
- 5-28 .B.
€3 . 4 x4 lﬁ e (Iv.6.10)
3 Re EV'Nb‘} %
ard
ed a0t "
€, = Y M J

Re Pr F

The boundary conditions of detonating blast wave problems are given ty the Hugo-

niot relations, £qs. (I1,93), (II.54) and (IT1.85), These equations may be re-

written as
F 1-4 145 1 E{,m
- - E-
o= Al - 2k v W

(Iv.6.11)

and

9,1:/‘;,»{-.&&!.

Tny reduction of the governing equations, Egs. (IV.B6.8), to self-similarity
leads Lo the determination o the values of the constants o and P , as givan

by Kamel v oal. (18772), which are <aual tod

Y.anu dnd e M Sl it it Laan s A ol 2ou
w2 e p / P i
N PP B . v
¢ LY v . — «
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o = 4 (=1 =4 (5927
5 () and B =5 (S2F) (IV.6.12)

The coefficients of viscosity, thermal conduction and absorption which vary

with temperature as given by Eq. (IV.6.4), must be independent of time, sinca

EINCAMLAGS  FOE s 3 JAAAS e
.. - o a0 o 4o P
-

they are properties of the flowing substance. Therefore, the constants o and
IE P must have the same values, given by Eg. (IV.6.12), that are independent of - i
!" hY

Y which ars also valid for the non-self-similar case.

The mass and energy integrals, in the case of inviscid medium, have the forms

given by Egs. (II.B5) and (II.96) respectively, which are

-

e |

,,ﬂfﬁvj
»

1 -
J
J, = fhx! dx = 4 (1V.6.13)
° J+ 1
T
and
1 . ;
J, = [+ 4 hF) x? dx -
- (d+1) =
=4 ¥ 1 ¥4
= . B e ———— o — «0o
& ( Ty i (1V.8.14)
while the decay coefficient A is given by Eq. (II.97) as
5 ".d .
’>\ ,.(:’;3)33 = ¥{8-1) -‘f. Ty B y
= AT e {IVv.8.153
by - Y dJs .
3 dy

which tar self-similar cases, reduces to

8!

'A‘ - j-'ni {1\/.6118}
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The quasi-similar technique, when applied, reduces the basic equations, Egs.
(IV.6.8), to ordinary differential ones, given by Egs. (III.23) - (II.25).

Hoting that ¢H = 0, these equations in this case reduce tc

(F-x)%+h(-j’-'£+f.£-)+)kﬂ =0 '}
(F-X) dF .4 d8 . AfB = fiDF (IV.6.17)
da h d% r
and
\ 49 & B}
(F—x):f;+88(2-§+J.’:}>+296 9 & J
where
Ae _ 2
1«/h
B = :ZL - 08 ‘
fa
and
C e P4 _ 4
5E +9
with
¢ = 4 8k :(;.‘é_)[1_ (a.4) + (32 4%
T dy e (t-9) - (re 1) Fyy
Colte Yo TN lela.gllves .E‘LF- . _dﬁ. ang ﬂ— in Ege. (1V.0.Y/0, onu ob-

- 8% dx 4%

sl
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tains, as given by Eqs. (III.26) - (III.28) when dﬁﬂ =

.ci_f2 .-.{i;’_:if + A9C , FF- 20 h (& - 28B) - gqg_]/[_h(/‘.x)‘. ¥9) 7

(IV.6.18)
dh (AF +,__ +AA)
dx (F-%) p

and

49 .
< =~k [F-04 + A6 - f&] J

iil) Solution

The solution procedure is divided into two steps. First, the inviscid flow
field is obtained by solving the conservation equations, Eqs. (IV.6.18), ne-
glecting fransport effects (i.e. g6 = ¢B = 0) and the problem is reduced
to the one discussed previously in secticn (IV.4). This solution is obtained
in order to determing 7\ . Then the effect of Fransport phenomena is accoun-
teo for by assuming the fiow field tec consist of two regions, namely an outer
region and ar inner region, with transporc effects existing in the Inner re-
gion oaly (Kamel et al., 1877a). Series expansions for the gasdynamic paramne-
t :s alu uced to obtain the inner region solution which wu~t be matched with

L . rtor the lnviscid ocuter region.

At wlder L1 magnitude analysis to the conservaticn eguations was performed by
fare) oL alet1%77a) to Linplity tiem in the inner region. Twu inaln Curclu-
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dropped from the momentum and energy equation.

bl The momentum equation reduces to:

=3 o (IV.6.19)

————

x

which indicates that the pressure is constant throughout the inner region. The
continuity equation remains unchanged, as given by the first of Eqs. (IV.6.6),

while the energy equation becomes:

4 =9 - if) = € _g_.%‘
e
- x_!_% ?.% + @+ o) .f.;(;;_‘k)‘] (IV.6.20)
where
€ = é; + €J

For the inner region solution, instead of following the complicated procedure
of finding the value of g%_ which contains second oraer differentiations hy
iteration, one can cbtain an approximate solution, leading to at least a good
qualitative description of the flow field, by assuming that the gasdynamic

parameters may be expanded in a power series in the form

f=Ff + € xX 6?5“ +-/§ x>, ox*) 1
(IV.6.21)

hehyt hi o hyx* 4 h X4 0cx%)
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and

where the coefficients of the powers of X are functions of Y only. A com-
patibility equation which must be satisfied by the correct solution, Eg.
(I1.112), 1is that the particle velocity at the center of symmetry must be
equal to zero, that is f(o+Y) = 0. Immediately it is shown that F; = 0,

At the center of symmetry, however, one has:

=T at X =o
2K

2h
% at X=o

If this equation is to be satis'ied then ‘1‘ must alsc vanish. Substituting
£qs. (IV.B6.21) into the fiis. of Eqs. (IV.6.6) and €q. (IV.€.20), and equa-
ting the coefficients of the samng powsrs of X to zero, one obtains from the

continuity equation:

AY ‘T‘;z +(J'+4)/; = o0 (IV.6.22)

o

whett the prime indicates gifferentiation with respert to Y , alwo 6 =0 .

;13 = Q0 dnd

Ad (h] -~

K4 ’
2ho 3+3Y_2h ,(d+3)h f =0 :
pre . T ) , +(1+3) Ay S (1V.6.23)
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From the energy equation, one gets

’ /7 . «
A+ AY g- - ¥)Y _'ta =-€[2¢+h] —-E-‘;—‘ (1V.6.24)

The gasdynamic parameters F and /1 , given by Egs. (IV.6.21), are now reduced

to:

F:;‘X«pé‘x"

and (IV.6.25)

h=h, +h %"

In addition to algebraic Eqs. (IV.6.22) - (IV.6.24) one has the three equa-

tions that match the inner solution to the outer solution, namely

f;‘n = 6 X "'é %c: )

hy = ho + ha x: (IV.5.26)
and

9”‘- - go J

where %, is the X boundary of the inner region.

Equations (IV.6.22), (IV.6.23), (IV.6.24) and (IV.6.26) form a system of six
equations that may be solved simultaneously for £ /; v hy * hg 9,

and X, ¢ for a particular shock strength Y.
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The derivatives of the coefficients ho , Az and SL with respect to ¥ can

be put in a finite difference form as:

> W

l\., ) = ,._‘LE_ = ..A_l‘..ﬂ. = A‘°)i - A‘O)f—! "
i d9 ay -~ AY

h) =dha = ahe = hai-hadig
44 ay AY '
}” (IV.6.27)

and

9y = d% = 4% o ok - o)i
i d4 AY aY )

To davelop t*he computational procedure, the problem is solved first in the
self-gimilar caee by putting Y sequal to zoro in Eqs. (IV.6.22) - (IV.6.24).

These equations reduce to
F‘:O

E, s 2 hi/[l’\.o(ﬂ'*&)]
L (Iv.G.28)

and

h, = /:f"/(zg 57;‘] '

After scme algebraic manipulation, one can easily obtain the following equa-
tions for the ceterndnation of the coefflcisnts 99 p f; , ko and h& in
terms of the values of the gatdynamic parameters at the metching point Y, .

é; ard hhn :

3
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h,= 2 A,,/[(J;a)/a' K: +2] i
(IV.6.289)

and

hy = £ h, (443) /2 ‘ )

Since all the cecefficients depend on the matching point parameters, an itera-
tive procedure is reguired to find the matching point ?gn which satisfies the
last of Egs. (IV.6.28). The latter equation may not be satlsfied at & speci-
fied step of the numerical integration procedure, X, - Thus, assuming a li-
near relation between the residual value of that equation, R , and 2 , the
correct value of the matching point X, can be obtained by interpolaticn, as

shown in Fig. IV.6.1. In addition, Lhe following relaticns were used:

K 2 o .
R=bh, - h, ~J(ze 9, ) (IV.5.30)
and

X, =% ) (IV.6.31)

m {

g (AK) RL. /(K“—- R

-1

whare R@ is the residual value of the last of Egs. (IV.6.28) at x;
The corresponding values of the gasuyhamlic parameters at the matching point
are also dstermined by interpolation, considering straight line relations bet-

ween their values and & . For an exemgle, Fig. IV.6.2 shows how the particle

A

r
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velocity at the matching point, /’; , is determined. Thus S
oo p o, (Fg =) (-2 .
m = Jp+ o
(A %) ,
h _ h (ke "1{')(42’«-%:‘)
m = Tt —
(A %) y
¢ (Iv.6.32) -
and : -
9 . 9 (9:.1 - g,)(xm --xl')
m = e J -
(A X)
Oncz the matching polnt parameters are determined, the coefficients 90 ’ A-o s
/1,1 ana 6 are alsc determined to define completuly the imner region solu- -
tion for vae self-similar problem,
One can then proceed to obtain the sclution for the non-self-similar problem. ‘: .
At @ specified value of Y=Y, , frum Egs. (IV.6.22), (IV.6.23) and (IV.6.27), _

after some algebraic manipulations, one may obtain the coefficients 9o, h, s =
hy . £, end £ in terms of the values of the gasdynamic parameters at the

matching point as follows:

9

o ”l |
.= (b4 /52_40.c Y /za

(hm - ha;) /,ﬁ:’i L)

fi

g
(]
1]

e~
]

f,o= - A Y (hoi = hoi-t)

H

(a4) hx. "(ﬁ‘i-i)
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R —
A v

E and
% 3 = (A; - /;( Ko ) //;t;f
b
P where
El-.
: @ = Ao a8 1 [ 7 1y o] 69
+
X
b = 2')\'."-".'?5'1 [Am +(j-+3) ho . ]
J+1 o

F + X [,QAM(A‘:!)-;- A; Y kx;_1 ?C:,J

and

_ . d+3 RV '
€ =209 A, P Po

Equation (IV.6.24) must be satisfied for the correct values of the gasdynamic

parameters, and thus one follows the same prccedure which is used for the self-

g

similar problem.

P* " The equation which corresponds to Eq. (IV.6.30) will take the form:
qg. . ,
R = %"‘{‘-4 + ‘Jl[(l.. .__"_‘_'“.) -¥(1- .’_‘2.1.'_’_)]
' QDf k°?

N 2
+ 2€ (I+1) A2.~ (%.'-‘) / /‘-ol‘ (IV.6.34)

D." o.

Equations (IV.6.31) and (IV.6.32) are uved to obtain the gasdynamic parameters

at the matching point X, and thus the coefficients 9o , F . £, A, and

4 3
h‘ .
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Having computed all variables at Y = Y; , one can proceed to obtain the solu-

tion at Y = yioi by applying the same procedure. The procedure is then re-

peated to cover the whole Y domain.

iv) Results and Conclusions

In order to obtain a numerical solution, it has been considered that the deto-

nating medium is a stoichiometric methane-air mixture, for which 94 = 20.0231,
¥ = 1.3end Y= 0.033786 (see section (IV.4)).

The values of the parameters of transport propertiss which have been used to

obtain the inner region solution are Re = 104, Pr =1 and No = 1.

Introducing the sffect of transport properties inside the inner region, the
density at the center of symmetry, as expected, took the non-zerc values shown
in Figs. IV.6.3 and the temperature took finite values shown in Figs. IV.65.4
for different geometries and the indicated specific values of Re , Pv» and
No . The dotted range in these curves expresses the continuation of the in-
viscid sulution of the outer region if transport effects were to pe neglected.
Since the energy inside the flow field :s conserved, the sclution of the inner
region rearranges the temperature distribution ineide the inner region only as
shown in Figs.IV.6.4. One may expect that the rearrangement of such tempera-
ture inside the whole of the flow field can be achieved by considering the
transport effects in the outer region, which would have a rather small contri-

bution.

The velocity profiles for 0.005¢ Y < 0.033, as shown in Figs. IV.6.5, extend
into negative values of F indicating that the particles, after their initial
outward shift due to the passage of the front, returns towards the center of

the flow field. This occurs due to the relaxation following the strong explo-
sion which causes nearly all the mass of the blast wave, immediately after ex-

plosion, to be concentrated close to the wave front.

It should be noted that the pressure profiles gre not different from those of
the inviscid case, Figs. IV.4. 1, This result is based un the assumpticn that
the pressure is constant throughout the inner region. This assumption was up-

neld by Kamel et al.(1Y77a) when he found that the pressure distribution is
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insensitive to the effects of both thermal conductiorn and radiation.

The viscosity and conductivity exponent e« is taken to egual its self-similar
values of -}, 0 and 1/6 for planar, cylindrical and spherical geometries,
respectively, while the radiation exponent B is considered to equal 7/2, J
and 17/€ for the same geometries, as given by Eqg. (IV.6.12). Therefore, at a
certain temperature, the thermal conductivity is greatest for the spherical
wave and least for the planar one, while the ahsorption coefficient a’ must
be lowest for the spherical wave and highest for the planar rne. This means
that the dissipation effects are greatest for spherical waves and least for

planar waves.

Figure IV.6.8 shows the thicknuss of the central inner region, x, , as a
function of the parameter Y for plcnar, cylindrical and spherical geometries.
As exprcted, the thickness of the inner region has a maximum value at Y =0,
immediately after explosicn, with highest heat dissipation and then decreases
as the wave front decays. At any specified value of Y , the thickness of
the ineer region is greatest for the spherical case, with its greatest dissi-

pative effects, and lzast for the planar wave.

Figures IV,6,7 show the integral curves in the F-2 phase-plane, for the
inner region, for planar, cylindrical and spherical geometries. As shown in
these figures, the integral curves, within the range 0.005< 4 0.033, extend

into negative values of F , the same tendency in velccity profiles.

Figures from IV.6.8 to IV.6.12 give the relations betwsen the coefficients
9% . ho v hy o F‘ and F; and the parameter 4 , respectively, for dif-

ferent blast wave geometries.

Another important result of this analysis is that, when the mass integtal, dJ, .,

and the energy integral, 3; , were evaluated with transport phenomena taken
into account, they differ very slightly from those of the inviscid medium.
This directly indicates from Eg. (IV.6.14]) that the shock wave similarity
front crajectory remains nearly unaffected by trapgport phenomena and does

not differ from that of the inviccid medium,

The sharp transition between the inner reglon, whers trenupcri phenclena are

most important, and the ocuter inviscid rogion is asucgiatco, of course, with a
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physically inadmissible idealization. However, smooth transitions may be

-

ey

achievec if series expansions of the gasdynamic parameters of higher powers
for the inner region solution are used and if the outer region contains al-

s0 the transport effects.

| 7
]
i

A




K
~ 305 - il
Figure Captions fif
. Fig. IV.6.1. A schematic diagram shows how the correct valus of the matching -
point ?an is obtained. T”;
Fig. IV.6.2 A schematic diagram shows how the particle velocity at the mat-
ching point ﬁwt is obtained.
- 4
Fig. IV.6.3 (a), (b) & (c)
Non-dimsnsicnal density profiles of blast waves in a dstanating
mathane-air mixture with transport phenomena taken into account
- for Re : 3 4?r‘1 No = 1und‘6'=lawhiled*0, Wi
1 and 2, respectively.
Fig. IV.6.4 (a), (b) & (c)
Non-dimensional temperature profiles of blast waves in & detona- "“;
ting methane-air mixture with transport phenomena taken into ac-
count for Re = 104, Pr =1, No =1&and ¥ = 1.3 while .
d -0, 1 and 2, respectively. -
. .4

Fig. IV.8.5 (a), (b) & (c)
Non-dimensional velocity profiles of blast waves in a detonating
methane-air m1xture with transport phsnomena taken into account
for Re =107, B =1, No=1and ¥ = 1.3 while 4 = 0, 1 and P

2, respectively.

Fig. IV.6.6 Nor-dimensional thickness of the inner region ﬂﬁn , as a function
of V , 0f blast waves in a detonating methane-air mixture with o
trensport phenomena taken into account {or Re = 104, Pr =1,

Noe = 1and ¥ = 1.3 while § =0, 1 and 7.

Fig. IV.6.7 (a), (b) & (c) -1
Integral curves in the F-Z phase plare for the inner region, for

different values of Y , of blast waves in a detonating metSane-

3 Ty
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